جذب ترکیبات کروم III از پساب رنگی صنعت چرم توسط نانوذرات سیلیس

نوع مقاله : پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند تبریز، تبریز، ایران، صندوق‌پستی: 1996-51335.

2 دانشیار، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند تبریز، تبریز، ایران، صندوق‌پستی: 1996-51335.

3 استاد، گروه مهندسی شیمی‌دانشگاه صنعتی ارومیه، ارومیه، ایران، صندوق‌پستی: 57155-419.

چکیده

در تحقیق حاضر از نانوذرات سیلیس تهیه شده از پوسته برنج به روش ترسیب متداول و فراصوت برای تصفیه پساب واحد تولید چرم استفاده است. اثر غلظت سود، pH ترسیب و زمان پیرسازی بر بازدهی جذب سیلیس به کمک روش طراحی مرکب مرکزی مورد مطالعه قرار گرفته است. نتایج آزمایشات نشان داد که خاکستر پوسته برنج به عنوان پیش ماده مورد استفاده در تهیه سیلیس، باید در محلول رقیق سود با غلظت 5/0 مولار حل شود و pH ترسیب نیز باید در حدود 0/9 کنترل گردد تا جاذبی با عملکرد مناسب برای حذف ترکیبات کروم III حاصل شود. هر چند سطح ویژه سیلیس بدست آمده با روش رسوب‌دهی متداول، بزرگ‌تر از مقدار آن برای جاذب حاصل از ترسیب تحت امواج فراصوت است، توزیع اندازه خلل دارای نقش اساسی در جذب ترکیبات کروم است. ترسیب تحت فراصوت منجر به منافذ بزرگی می‌شود که در محدوده 38-4 نانومتر توزیع می‌شوند و نفوذ ترکیبات کروم را حتی در محیط‌های اسیدی تسهیل می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adsorption of Chromium III Species from Colorant Tannery Wastewater by Silica Nano-Particles

نویسندگان [English]

  • Zahra Hosseine Amirhandeh 1
  • Amin Salem 2
  • ُShiva Salem 3
1 Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran, P. O. Box: 51335-1996.
2 Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran, P. O. Box: 51335-1996
3 Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran, P. O. Box: 419-57155
چکیده [English]

The current research uses silica nanoparticles produced from rice husk through conventional and sonochemical precipitation to treat industrial tannery wastewater. The effects of NaOH concentration, precipitation pH, and ageing time on adsorption properties were studied via the central composite design (CCD) method. The obtained results indicated that rice husk ash, as a precursor used in the preparation of silica, should be dissolved in the dilute NaOH solution, 0.5 mol L-1, and precipitation pH should be controlled at the level of 9.0 to achieve an adsorbent with proper performance. Although the surface area of powder produced conventionally is larger than that obtained by the sonochemical method, the pore size distribution plays an effective role in the adsorption of Cr III compounds. The precipitation under sonication leads to large pores distributed in the 4-38 nm range, facilitating the diffusion of chromium compounds even in acidic environments.

کلیدواژه‌ها [English]

  • Rice husk
  • tannery wastewater
  • chromium species
  • meso-silica powder
  • ultrasound-assisted precipitation
  • adsorption
1.   Navai diva T. Various adsorbents for removal of rhodamine b dye: A review. J Stud Color World. 2023;12(4):387-404. https://dorl.net/dor/20.1001.1.2 2517278.1401.12.4.6.7 [In Persian].
2.   Tabaraki R, Sadeghinejad N, Poorajam H. Study of Dyes Removal from Binary System by Hazelnut Husk as Agricultural Waste by Response Surface Methodology. J Color Sci Technol. 2020;14:13-23. https://dorl.net/dor/20.1001.1.17358779.1399.14.1.2.0 [In Persian].
3.   Mor S, Manchanda CK, Kansal SK, Ravindra K. Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod. 2017;143:1284-90. https://doi.org/10.1016/j.jclepro.2016.11.142 
4.   Le VH, Thuc CNT, Thuc HH. Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett. 2013;8:58. https://doi.org/10.1186/1556-276X-8-58 
5.   Azat S, Korobeinyk AV, Moustakas K, Inglezakis VJ. Sustainable production of pure silica from rice husk waste in Kazakhstan. J Clean Prod. 2019;217:352-9. https://doi.org/10.1016/j.jclepro.2019.01.142 
6.   Sankar S, Sharma SK, Kaur N, Lee B, Kim DY, Lee S, et al. Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by chemical method. Ceram Int. 2016;42:4875-85. https://doi.org/10.1016/j.ceramint.2015.11.172 
7.   Song S, Cho HB, Kim HT. Surfactant-free synthesis of high surface area silica nanoparticles derived from rice husks by employing the Taguchi approach. J Ind Eng Chem. 2018;61:281-7.
 https://doi.org/10.1016/j.jiec.2017.12.025. 
8.   Sankar S, Kaur N, Lee S, Kim DY. Rapid sonochemical synthesis of spherical silica nanoparticles derived from brown rice husk. Ceram Int. 2018;44:8720-4. https://doi.org/10.1016/j.ceramint.2018.02.090. 
9.   Peres EC, Favarin N, Slaviero J, Almeida ARF, Enders MP, Muller EI, et al. Bio–nanosilica obtained from rice husk using ultrasound and its potential for dye removal. Mater Lett. 2018;231:72-5. 
 https://doi.org/10.1016/j.matlet.2018.08.018. 
10.  Dana E. Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous Mesoporous Mater. 2017;247:145-57. 
https://doi.org/10.1016/j.micromeso.2017.03.050. 
11.  Karimi-Maleh H, Orooji Y, Ayati A, Qanbari S, Tanhaei B, Karimi F, et al. Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq. 2021;329:115062..
 https://doi.org/10.1016/j.molliq.2020.115062. 
12.  Jacob JJ, Varalakshmi R, Gargi S, Jayasri MA, Suthindhiran K. Removal of Cr (III) and Ni (II) from tannery effluent using calcium carbonate coated bacterial magnetosomes. NPJ Clean Water. 2018;1:1-9. 
https://doi.org/10.1038/s41545-018-0001-2. 
13.  Oumani A, Mandi L, Berrekhis F, Ouazzani N. Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: Key parameters and mechanisms. J Hazard Mater. 2019;378:120718. 
https://doi.org/10.1016/j.jhazmat.2019.05.111.  
14.  Qi X, Wang H, Zhang L, Xu B, Shi Q, Li F. Removal of Cr (Ⅲ) from aqueous solution by using bauxite residue (red mud): Identification of active components and column tests. Chemosphere. 2020;245:125560. 
https://doi.org/10.1016/j.chemosphere.2019.125560.
15.  Sarı A, Tuzen M, Soylak M. Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J Hazard Mater. 2007;144:41–46. 
https://doi.org/10.1016/j.jhazmat.2006.09.080. 
16.  Fahim NF, Barsoum BN, Eid AE, Khalil MS. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste. J Hazard Mater B136. 2006;303–309. https://doi.org/10.1016/j.jhazmat.2005.12.014 
17.  Saravanan A, Kumar PS, Govarthanan M, George CS, Vaishnavi S, Moulishwaran B, et al. Adsorption characteristics of magnetic nanoparticles coated mixed fungal biomass for toxic Cr(VI) ions in aquatic environment. Chemosphere. 2021;267:129226. 
https://doi.org/10.1016/j.chemosphere.2020.129226.
18.  Zhao J, Boada R, Cibin G, Palet C. Enhancement of selective adsorption of Cr species via modification of pine biomass. Sci Total Environ. 2021;756:143816. https://doi.org/10.1016/j.scitotenv.2020.143816. 
19.  Qiu Y, Zhang Q, Gao B, Li M, Fan Z, Sang W, et al. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation. Environ Pollut. 2020;265(Part B):115018. 
https://doi.org/10.1016/j.envpol.2020.115018. 
20.  Diab MA, Attia NF, Attia AS, El-Shahat MF. Green synthesis of cost-effective and efficient nanoadsorbents based on zero and two dimensional nanomaterials for Zn2+ and Cr3+ removal from aqueous solutions. Synth Met. 2020;265:116411. https://doi.org/10.1016/j.synthmet.2020.116411 
21.  Gomez-Gonzalez SE, Carbajal-Arizaga GG, Manriquez-Gonzalez R, Cruz-Hernandez WD, Gomez-Salazar S. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups. Mater Res Bull. 2014;59:394-404. https://doi.org/10.1016/j.materresbull.2014.07.035. 
22.  Ayele L, Pérez E, Mayoral Á, Chebude Y, Díaz I. Synthesis of zeolite A using raw kaolin from Ethiopia and its application in removal of Cr(III) from tannery wastewater. J Chem Technol Biotechnol. 2018;93(1):146-154. https://doi.org/10.1002/jctb.5334. 
23.  Alanne AL, Tuikka M, Tonsuaadu K, Ylisirnio M, Hamalainen L, Turhanen P, et al. A novel bisphosphonate-based solid phase method for effective removal of chromium(III) from aqueous solutions and tannery effluents. RSC Adv. 2013;3:14132–14138. https://doi.org/10.1039/C3RA41501E. 
24.  Guan X, Chang J, Chen Y, Fan H. A magnetically-separable Fe3O4 nanoparticle surface grafted with polyacrylic acid for chromium(III) removal from tannery effluents. RSC Adv. 2015;5:50126–50136. https://doi.org/10.1039/C5RA06659J. 
25.  Khalil U, Shakoor MB, Ali S, Ahmad SR, Rizwan M, Alsahli AA, et al. Selective removal of hexavalent chromium from wastewater by rice husk: kinetic, isotherm and spectroscopic investigation. Water. 2021;13:263.
      https://doi.org/10.3390/w13030263. 
26.  Rajendran A, Mansiya C. Extraction of chromium from tannery effluents using waste egg shell material as an adsorbent. Br J Environ Clim Change. 2011;1(2):44-52.
27.  Reyes-Serrano A, López-Alejo JE, Hernández-Cortázar MA, Elizalde I. Removing contaminants from tannery wastewater by chemical precipitation using CaO and Ca(OH)2. Chin J Chem Eng. 2020;28:1107–1111.https://doi.org/10.1016/j.cjche.2019.12.023. 
28.  Namasivayam C, Holl WH. Chromium(III) removal in tannery waste waters using Chinese Reed (Miscanthus Sinensis), a fast growing plant. Holz Roh Werkst. 2004;62:74–80. https://doi.org/10.1007/s00107-003-0431-4. 
29.  Gervas C, Mubofu EB, Mdoe JEG, Revaprasadu N. Functionalized mesoporous organo-silica nanosorbents for removal of chromium (III) ions from tanneries wastewater. J Porous Mater. 2016;23:83–93. https://doi.org/10.1007/s10934-015-0058-y. 
30.  Ahmed E, Abdull HM, Mohamed AH, El-Bassuony AD. Remediation and recycling of chromium from tannery wastewater using combined chemical–biological treatment system. Process Saf Environ Prot. 2016;104:1-10. https://doi.org/10.1016/j.psep.2016.08.004. 
31.  Bonola B, Sosa-Rodríguez F, Lara RH, García-Solares SM, Mena V, Lartundo-Rojas L, et al. Sustainable and fast elimination of high Cr(III) concentrations from real tannery wastewater using an electrochemical-chemical process forming Cr2FeO4. Sep Purif Technol. 2022;294:121211.https://doi.org/10.1016/j.seppur.2022.121211. 
32.  Zakmout A, Sadi F, Velizarov S, Crespo JG, Portuga CAM. Recovery of cr(iii) from tannery effluents by diafiltration using chitosan modified membranes. Water. 2021;13:2598. https://doi.org/10.3390/w13182598 
33.  Nur E Alam M, Mia MAS, Ahmad F, Rahman MM. An overview of chromium removal techniques from tannery effluent. Appl Water Sci. 2020;10:205. https://doi.org/10.1007/s13201-020-01286-0 
34.  Liou TH. Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng A. 2004;364:313. https://doi.org/10.1016/j.msea.2003.08.045 
35.  Noushadn M, Rahman IA, Zulkifli NSC, Husein A, Mohamad D. Low surface area nanosilica from an agricultural biomass for fabrication of dental nanocomposites. Ceram Int. 2014;40:4163.
 https://doi.org/10.1016/j.ceramint.2013.08.073
36.  Zulkifli NSC, Rahmann IA, Mohamad D, Husein A. A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram Int. 
2013;39:4559.https://doi.org/10.1016/j.ceramint.2012.11.052. 
37.  Bhattacharya M, Mandal MK. Synthesis of rice straw extracted nano-silica-composite membrane for CO2 separation. J Clean Prod. 2018;186:241.
https://doi.org/10.1016/j.jclepro.2018.03.099 
38.  Costa JAS, Paranhos CM. Systematic evaluation of amorphous silica production from rice husk ashes. J Clean Prod. 2018;192:688. 
https://doi.org/10.1016/j.jclepro.2018.05.028 
39.  Temel TM, Ikizler BK, Terzioğlu P, Yücel S, Elalmış YB. The effect of process variables on the properties of nanoporous silica aerogels: an approach to prepare silica aerogels from biosilica. J Sol-Gel Sci Technol. 2017;84:51. https://doi.org/10.1007/s10971-017-4469-x 
40.  Sharma I, Goyal D. Chromium (III) removal from tannery effluent by Streptomyces sp. (MB2) waste biomass of fermentation process. Int J Integr Biol. 2009;6(3):148.
41.  Notghi Oskui F, Aghdasinia H, Golghasemi Sorkhabi M. Adsorption of Cr (III) using an Iranian natural nanoclay: applicable to tannery wastewater: equilibrium, kinetic, and thermodynamic. Environ Earth Sci. 2019;78:106. https://doi.org/10.1007/s12665-019-8104-8.