بررسی عملکرد راکتور بستر لجن بی‌هوازی با جریان رو‌به‌بالا در تصفیه فاضلاب رنگرزی پارچه

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، پژوهشکده انرژی، پژوهشگاه مواد و انرژی، کرج، ایران، صندوق‌پستی: ۳۱۶-۳۱۷۸۷.

2 دانشیار، پژوهشکده انرژی، پژوهشگاه مواد و انرژی، کرج، ایران، صندوق‌پستی: ۳۱۶-۳۱۷۸۷.

3 استاد، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر، تهران، ایران، صندوق‌پستی: ۴۴۱۳-۱۵۸۷۵.

4 دانشجوی کارشناسی ارشد، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر، تهران، ایران، صندوق‌پستی: ۴۴۱۳-۱۵۸۷۵.

چکیده

صنایع نساجی و رنگرزی طی سال‌های اخیر پیشرفت چشمگیری داشته است و سالیانه مقدار زیادی مواد رنگزا  توسط این صنایع مصرف می‌شود. تثبیت ضعیف مواد رنگزا، باعث ورود مقادیر زیادی از آن‌ها به فاضلاب می‌شود. در میان فرآیند‌های مختلف برای تصفیه فاضلاب رنگرزی، تصفیه بی‌هوازی روشی کارآمد به شمار می‌رود. از بین فرآیندهای بی‌هوازی، راکتور بستر لجن بی‌هوازی با جریان روبه‌بالا (UASB)، به دلیل بازده بالا در حذف مواد رنگزا، میزان اکسیژن‌خواهی شیمیایی و سایر آلاینده‌ها در فاضلاب نساجی همچنین قابلیت ترکیب‌شدن با سایر روش‌های تصفیه فاضلاب نساجی در جهت افزایش کیفیت پساب خروجی محبوبیت بالایی دارد. در این مطالعه به بررسی عملکرد این راکتور در تصفیه فاضلاب رنگرزی، سازوکار حذف مواد رنگزا و پارامتر‌های عملیاتی مؤثر جهت افزایش بازده سیستم پرداخته شده است، سپس مروری بر مطالعات انجام شده در این زمینه صورت‌گرفته است. در نهایت چالش‌ها و چشم‌انداز‌های پیش‌رو بیان گردید. نتایج و دستاورد‌های موجود در سیستم‌های UASB نشان‌داده‌شده در تحقیق حاضر می‌تواند نگرش‌های جدیدی در مورد بهبود عملکرد UASB در تصفیة فاضلاب رنگرزی با نگرش زیست‌محیطی ارائه دهد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Performance of Up-flow Anaerobic Sludge Blanket Reactor in Textile Dyeing Wastewater Treatment

نویسندگان [English]

  • Alireza Vanaki 1
  • Elham Abdollahzadeh Sharghi 2
  • Babak Bonakdarpour 3
  • Mona Shariati 4
1 Energy Department, Materials and Energy Research Center, Karaj, Iran, P. O. Box: 31787-316.
2 Energy Department, Materials and Energy Research Center, Karaj, Iran, P. O. Box: 31787-316.
3 Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran, P. O. Box: 15875-4413.
4 Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran, P. O. Box: 15875-4413..
چکیده [English]

Textile and dyeing industries have made significant progress in recent years, and a large amount of dyes are consumed by these industries. The poor stabilization of dyes leads to the entry of large amounts of them into wastewater. Between different processes for dyeing wastewater treatment, anaerobic treatment is considered an efficient method. Among the anaerobic processes, upflow anaerobic sludge blanket reactor (UASB) is very popular due to its high efficiency in removing dyes, chemical oxygen demand, and other pollutants in textile wastewater, as well as the ability to combine with other textile wastewater treatment methods to improve the quality of the effluent. This study investigates the performance of UASB reactor in dyeing wastewater treatment, dye removal mechanism, and operational parameters. Then, a review of the studies conducted in this field is conducted. Finally, the challenges and prospects ahead are stated. The results and achievements of UASB systems presented in this study can provide new insights into improving UASB performance in dye wastewater treatment with an environmental perspective.

کلیدواژه‌ها [English]

  • Up-flow anaerobic sludge blanket reactor Dyeing wastewater
  • Anaerobic digestion. Decolorization mechanism
  • Organic loading rate
  • Hydraulic retention time
  • Dye concentration
Rustrian E, Cervantes FJ, van Haandel AC, Monroy O, Celis B. Advanced biological treatment processes for industrial wastewaters, IWA publishing, 2006. https://doi.org/10.2166/9781780402345. 
2. Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: a review, J. Taiwan Inst. Chem. Eng. 2011;42(1):138-157. https://doi.org/10.1016/j.jtice.2010.06.006.
3. de Almeida R, de Souza Guimarães C. Up-Flow anaerobic sludge blanket reactors in dye removal: mechanisms, influence factors, and performance, In Biological Approaches in Dye-Containing Wastewater: Volume 1, Singapore: Springer, 2022;201-227.
4. Bahia M, Borges TA, Passos F, Aquino SF, Silva SD. Evaluation of a combined system based on an upflow anaerobic sludge blanket reactor (UASB) and sallow polishing pond (SPP) for textile effluent treatment, Braz. Arch. Biol. Technol. 2020;30-63. https://doi.org/10.1590/1678-4324-2020180130.
5. Sohouli E, Shahdost Fard F,  Nazarian F. Evaluation of the effectiveness of most important treatment methods for the decolorization of dyes, JSCW 1397;8(4):77-93. https://dorl.net/dor/ 20.1001.1.22517278.1397.8.4.7.0 (In Persian).
6. Carvalho JR, Amaral FM, Florencio L, Kato MT, Delforno TP, Gavazza S. Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye Direct Black 22, Chemosphere 2020;242:125157. https://doi.org/10.1016/j.chemosphere.2019.125157
7. Amaral FM, Florêncio L, Kato MT, Santa-Cruz PA, Gavazza S. Hydraulic retention time influence on azo dye and sulfate removal during the sequential anaerobic–aerobic treatment of real textile wastewater, Water Sci. Technol. 2017;76(12):3319-27.
      https://doi.org/10.2166/wst.2017.378 
8. Li F, Zhao K,  Ng TSA, Dai Y, Wang CH. Sustainable production of bio-oil and carbonaceous materials from biowaste co-pyrolysis, Chem. Eng. J. 2022;427:131821, https://doi.org/10.1016/j.cej.2021.131821 
9. Amaral FM, Kato MT, Florêncio L, Gavazza S. Color, organic matter and sulfate removal from textile effluents by anaerobic and aerobic processes, Bioresour. Technol. 2014;163:364-69. https://doi.org/10.1016/j.biortech.2014.04.026 .
10. Işık M, Sponza DT. Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye, Bioresour. Technol. 2005;96(5):633-43. https://doi.org/10.1016/j.biortech.2004.06.004 
11. Hossain MS,  Sarker P, Rahaman M, Ahmed FF,  Molla Rahman S, Uddin MK. Biological treatment of textile wastewater by total aerobic mixed bacteria and comparison with chemical fenton process. Pollut. 2022;8(4):1418-1433. https://doi.org/10.22059/poll.2022.340753.1408 
12. Hai FI, Yamamoto K, Fukushi K. Hybrid treatment systems for dye wastewater, Crit. Rev. Environ. Sci. Technol. 2007;37(4):315-77. https://doi.org/10.1515/reveh-2018-0013. 
13 . Somasiri W, Ruan W, Xiufen L, Jian C. Decolourization of textile wastewater containing acid dyes in UASB reactor system under mixed anaerobic granular sludge, EJEAFChe, 2006;5(1):1224-1234. https://doi.org/10.1007/s11270-012-1276-4 
14. Dafale N, Wate S, Meshram S, Neti NR. Bioremediation of wastewater containing azo dyes through sequential anaerobic–aerobic bioreactor system and its biodiversity, Environ. Rev. 2010;18:21-36. https://doi.org/10.1139/A10-001. 
15. Bidu JM, Rwiza M, Njau KN, Bruggen BV. Textile wastewater treatment in anaerobic reactor: Influence of domestic wastewater as co-substrate in color and COD removal, S. Afr. J. Chem. Eng. 2023;43(59):112-121. https://doi.org/10.1016/j.sajce.2022.10.007 .
16. Ferraz Jr AD, Kato MT, Florencio L, Gavazza S. Textile effluent treatment in a UASB reactor followed by submerged aerated biofiltration, Water Sci. Technol. 2011;64(8):1581-1589. https://doi.org/10.2166/wst.2011.674. 
17. Madsen M, Holm-Nielsen JB, Esbensen KH. Monitoring of anaerobic digestion processes: A review perspective, Renew. Sustain. Energy Rev. 2011;15(6);3141-3155. https://doi.org/10.1016/j.rser.2011.04.026
18. Monnet F. An introduction to anaerobic digestion of organic wastes, Remade Scotland 2003;379:1-48. https://doi.org/10.1007/978-3-319-24708-3_2 
19. Li Y, Chen Y, Wu J. Enhancement of methane production in anaerobic digestion process: A review, Appl. Energy 2019;240:120-137. https://doi.org/10.1016/j.apenergy.2019.01.243 
20. Náthia-Neves G, Berni M, Dragone G, Mussatto SI, Forster-Carneiro T. Anaerobic digestion process: technological aspects and recent developments, Int. J. Environ. Sci. Technol. 2018;15:2033-2046. https://doi.org/10.1007/s13762-018-1682-2 
21. Nguyen LN, Nguyen AQ, Nghiem L D. Microbial community in anaerobic digestion system: Progression in microbial ecology. Int. J. Water Wastewater Treat. 2019;331-355. https://doi.org/10.1007/978-981-13-3259-3_15.
22. Lecker B, Illi L, Lemmer A, Oechsner H. Biological hydrogen methanation – a review, Bioresour. Technol. 2017;245:1220-1228. https://doi.org/10.1016/j.biortech.2017.08.176 
23. Fu S, Angelidaki I, Zhang Y. In situ biogas upgrading by CO2-to-CH4 bioconversion, Trends Biotechnol. 2021;39(4):336-47. https://doi.org/10.1016/j.tibtech.2020.08.006 
24. Rajendran K, Aslanzadeh S, Taherzadeh MJ. Household biogas digesters—A review. Energies 2012;5(8):2911-42. https://doi.org/10.3390/en5082911 
25. Bharathiraja B, Sudharsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappan J. Biogas production–A review on composition, fuel properties, feed stock and principles of anaerobic digestion,              Renewable Sustainable Energy Rev. 2018;570-82. https://doi.org/10.1016/j.rser.2018.03.093 
26. Kothari R, Pandey AK, Kumar S, Tyagi VV, Tyagi SK. Different aspects of dry anaerobic digestion for bio-energy: An overview, Renewable Sustainable Energy Rev. 2014;39:174-95. https://doi.org/10.1016/j.rser.2014.07.011 
27. Bal AS, Dhagat NN. Upflow anaerobic sludge blanket reactor a review, Indian J. Environ. Health. 2001;43(2):1-82.
28. Chong S, Sen TK, Kayaalp A, Ang HM. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment–a state-of-the-art review, Water Res. 2012;46(11):3434-70. 
     https://doi.org/10.1016/j.watres.2012.03.066. 
29. dos Santos AB, Bisschops IA, Cervantes FJ, van Lier JB. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 C) and thermophilic (55 C) treatments for decolourisation of textile wastewater, Chemosphere 2004;55(9):1149-57. https://doi.org/10.1016/j.chemosphere.2004.01.031. 
30. de Barros AN, da Silva ME, Firmino PI, de Vasconcelos EA, dos Santos AB. Impact of microaeration and the redox mediator Anthraquinone‐2, 6‐Disulfonate on azo dye reduction and by-products degradation, Clean (Weinh) 2018;46(8):1700518. https://doi.org/10.1002/clen.201700518. 
31. Brás R, Gomes A, Ferra MI, Pinheiro HM, Gonçalves IC. Monoazo and diazo dye decolourisation studies in a methanogenic UASB reactor, J. Biotechnol. 2005;15(1):57-66. https://doi.org/10.1016/j.jbiotec.2004.08.001. 
32. Fazal S, Huang S, Zhang Y, Ullah Z, Ali A, Xu H. Biological treatment of red bronze dye through anaerobic process, Arab. J. Geosci. 2019;12:1-7.
      https://doi.org/10.1007/s12517-019-4572-0. 
33. Cui HM, Cui D, Liang B, Sangeetha T, Wang AJ, Cheng HY. Decolorization enhancement by optimizing azo dye loading rate in an anaerobic reactor, RSC Adv. 2016;6(55):49995-50001. https://doi.org/10.1039/C6RA04665G. 
34. Murali V, Ong SA, Ho LN, Wong YS. Decolorization of methyl orange using upflow anaerobic sludge blanket (UASB) reactor-An investigation of co-substrate and dye degradation kinetics, Desalination 2013;51(40-42):7621-30. https://doi.org/10.1080/19443994.2013.782255. 
35. Ong SA, Toorisaka E, Hirata M, Hano T. Decolorization of azo dye (Orange II) in a sequential UASB–SBR system, Sep. Purif. Technol. 2005;42(3):297-302. https://doi.org/10.1016/j.seppur.2004.09.004. 
36. Karatas M, Dursun S, Argun ME. The decolorization of azo dye reactive Black 5 in a sequential anaerobic-aerobic system, Ekoloji 2010;19(74):15-23.
37. Katal R, Zare H, Rastegar SO, Mavaddat P, Darzi GN. Removal of dye and chemical oxygen demand (COD) reduction from textile industrial wastewater using hybrid bioreactors, Environ. Eng. Manag. J. 2014;13(1). https://doi.org/10.30638/eemj.2014.007. 
38. Bahia M, Passos F, Adarme OF, Aquino SF, Silva SQ. Anaerobic-aerobic combined system for the biological treatment of azo dye solution using residual yeast, Water Environ. Res. 2018;90(8):729-37. 
     https://doi.org/10.2175/106143017X15131012153167. 
39. Tufaner F. Evaluation of COD and color removals of effluents from UASB reactor treating olive oil mill wastewater by Fenton process, Sep. Sci. Technol. 2020;55(18):3455-66.  https://doi.org/10.1080/01496395.2019.1682611. 
40. Venkatesh S, Venkatesh K, Quaff AR. Dye decomposition by combined ozonation and anaerobic treatment: Cost effective technology. JAST 2017;15(4):340-5. https://doi.org/10.1016/j.jart.2017.02.006 
41. Verma AK, Bhunia P, Dash RR. Performance of UASB reactor treating synthetic textile wastewater: effect of physicochemical pretreatment, Desalination 2016;57(18):8050-60. https://doi.org/10.1080/19443994.2015.1017739.