استفاده از روش‌های طیف‌سنجی و میکروسکوپی در بررسی شاخصه‌های شناسایی رنگ‌ماده تولیدی بر اساس دستور العمل‌های سنتی ایرانی: زرد زرنیخ

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار، گروه مرمت و باستان‌سنجی، دانشکده حفاظت آثار فرهنگی، دانشگاه هنر اسلامی تبریز، تبریز، ایران، کدپستی: 5164736931.

2 دانشیار، گروه مرمت و باستان‌سنجی، دانشکده حفاظت آثار فرهنگی، دانشگاه هنر اسلامی تبریز، تبریز، ایران، کدپستی: 5164736931

3 کارشناسی ارشد، گروه مرمت و باستان سنجی، دانشکده حفاظت آثار فرهنگی، دانشگاه هنر اسلامی تبریز، تبریز، ایران، کدپستی: 5164736931

چکیده

با توجه به اهمیت زرنیخ زرد در هنر ایرانی، در این پژوهش رنگدانه زرد حاصل از معادن زرنیخ شهر تکاب استان آذربایجان غربی مورد بررسی قرار گرفته است. بدین ترتیب از روش‌های مختلف طیف‌سنجی و میکروسکوپی برای بررسی رنگدانه و انواع رنگ‌ماده‌های ساخته شده از آن بر اساس رساله‌های مختلف از جمله حلیه الکتاب، مرکب و جلد‌سازی و همچنین مرکب و خط استفاده شده است. نتایج طیف‌سنجی رامان نشان داد که بست‌های صمغ عربی و روغن کنجد تداخل چندانی را با طیف رنگدانه ایجاد نکرده و از این‌رو شناسایی زرنیخ زرد به این روش به‌خوبی امکان‌پذیر است. PLM نیز به شناسایی زرنیخ بر اساس ویژگی‌های بلورشناسی آن کمک بسزایی می‌کند. بررسی با استفاده از SEM-EDX نیز نشان داد میزان ارسنیک و گوگرد به ترتیب 09/29 و 82/49 (%wt) در این رنگدانه است. اگرچه به دلیل عدم وجود نوار جذبی شاخص در ناحیه فروسرخ میانی، نمی توان از داده های FTIR برای شناسایی این رنگدانه بهره برد اما نتایج نشان داد که شاخصه‌های طیفی زرنیخ زرد در ترکیب با روغن بهتر از صمغ حفظ شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Spectroscopic and Microscopic Methods in the Study of the Identification Characteristics of Produced Paint Based on Traditional Persian Recipes: Orpiment

نویسندگان [English]

  • Ali Nemati Babaylou 1
  • َAlireza Koochakzaei 2
  • Ahmadreza Ghaem Amiri 3
1 Faculty of Cultural Materials Conservation, Tabriz Islamic Art University, Tabriz, Iran, P. O. Code: 5164736931, Tehran, Iran
2 Faculty of Cultural Materials Conservation, Tabriz Islamic Art University, Tabriz, Iran, P. O. Code: 5164736931, Tehran, Iran
3 Faculty of Cultural Materials Conservation, Tabriz Islamic Art University, Tabriz, Iran, P. O. Code: 5164736931, Tehran, Iran
چکیده [English]

Considering the importance of orpiment pigment in Persian Art, this research investigates yellow pigment derived from the orpiment mines in Tekab City, West Azerbaijan province. In this regard, spectroscopy and Microscopy methods were used to examine the pigments and colors made from them based on different treatises such as "Haliya al-Katab", "ink and Bookbinding", and also "Ink and Calligraphy". The results of Raman spectroscopy showed that Arabic gum and sesame oil did not interfere significantly with the pigment spectrum, making orpiment identification possible using this method. PLM also greatly assists in identifying orpiment based on its crystallographic features. SEM-EDX examinations also showed arsenic and sulfur content of 29.09% and 49.82% (wt%) in this pigment. Furthermore, FTIR spectroscopy results showed that the overall spectroscopic characteristics of orpiment were better preserved in combination with oil than gum. However, due to the absence of the absorption band of this pigment in the mid-infrared region, it is not a suitable method for identifying orpiment, but it can be used to identify the binder.

کلیدواژه‌ها [English]

  • Pigment identification
  • Orpiment pigment
  • Iranian recipes
  • Spectroscopy
  • Microscopic methods
  1. Edwards HG. Analytical Raman spectroscopic discrimination between yellow pigments of the Renaissance. Spectrochim Acta A Mol Biomol Spectrosc. 2011;80(1):14-20. https://doi.org/10. 1016/j.saa.2010.12 .023.
  2. Mastrotheodoros G, Beltsios K, Bassiakos Y. On the Red and Yellow Pigments of Post‐Byzantine Greek Icons. Archaeometry. 2021;63(4):753-78. https://doi.org/10.1111 /arcm .12642
  3. Jettens R, Stott G. Compressed culture of artistic pigments. Isfahan: Goldasteh; 1999 [In Persian].
  4. O'Day PA. Chemistry and mineralogy of arsenic. Elements. 2006;2(2):77-83. https://doi.org/10.2113/gselements.2.2.77.
  5. Zhang G, Chao X, Guo P, Cao J, Yang C. Catalytic effect of Ag+ on arsenic bioleaching from orpiment (As2S3) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus. J Hazard Mater. 2015;283:117-22. https://doi.org/10.1016/j.jhazmat.2014.09.022.
  6. Keune K, Mass J, Meirer F, Pottasch C, van Loon A, Hull A, et al. Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses. J Anal At Spectrom. 2015;30(3):813-27. https://doi.org/ 10.1039/C4JA00424H.
  7. Gliozzo E, Burgio L. Pigments-Arsenic-based yellows and reds. Archaeol Anthropol Sci. 2022;14(1):4. https://doi.org/ 10.1007/s12520-021-01431-z.
  8. Keune K, Mass J, Mehta A, Church J, Meirer F. Analytical imaging studies of the migration of degraded orpiment, realgar, and emerald green pigments in historic paintings and related conservation issues. Herit Sci. 2016;4:1-14. https://doi.org/10.1186/s40494-016-0078-1.
  9. Liu K, Dai L, Li H, Hu H, Yang L, Pu C, et al. Phase transition and metallization of orpiment by Raman spectroscopy, electrical conductivity and theoretical calculation under high pressure. Mater. 2019;12(5):784. https://doi.org/10.3390/ma12050784.
  10. Macchia A, Campanella L, Gazzoli D, Gravagna E, Maras A, Nunziante S, et al. Realgar and light. Procedia Chemistry. 2013;8:185-93. https://doi.org/10.1016/j.proche .2013.03.024.
  11. Macchia A, Cesaro SN, Campanella L, Maras A, Rocchia M, Roscioli G. Which light for cultural heritage: comparison of light sources with respect to realgar photodegradation. JAS. 2013;80:637-43. https://doi.org/ 10.1007/s10812-013-9820-6.
  12. Koochakzaei A, Nemati Babaylou A, Daneshpoor L. Identification of pigments used in decoration of paper inscription related to Ansarin house of Tabriz. J Color Sci Tech. 2015;9(4):297-306. https://dorl.net/dor/20.1001.1. 17358779.1394.9.4.3.2.
  13. Koochakzaei A, Alizadeh Gharetapeh S, Jelodarian Bidgoli B. Identification of pigments used in a Qajar manuscript from Iran by using atomic and molecular spectroscopy and technical photography methods. Herit Sci. 2022;10(1):30. https://doi.org/10.1186/s40494-022-00665-x
  14. Koochakzaei A, Hamzavi Y, Mousavi Ma-SS. Characterization of the mural blue paintings in ornamental motif of Ali Qapu palace in Isfahan, Iran, using spectroscopic and microscopic methods (a case study). JASR. 2022;45:103632. https://doi.org/10.1016/j.jasrep.2022 .103 632.
  15. Koochakzaei A, Hamzavi Y, Shojae Far F. Identification of red, blue and golden pigments in Qajar Mural Painting anaclitic fire place in Goharion House in Tabriz. J Color Sci Tech. 2022;15(4):287-99. https://dorl.net/dor/20.1001 .1.17358779.1400.15.4.3.4
  16. Koochakzaei A, Mobasher Maghsoud E, Jelodarian Bidgoli B. Non-invasive imaging and spectroscopy techniques for identifying historical pigments: a case study of Iranian manuscripts from the Qajar era. Herit Sci. 2023;11(1):157. https://doi.org/10.1186/s40494-023-01011-5.
  17. Abdel-Ghani M. Multidisciplinary study of a Qajar lacquered painting: Technology and materials characterization. Vib Spectrosc. 2022;119:103355. https: //doi.org/10.1016/j.vibspec.2022.103355
  18. Muralha VS, Burgio L, Clark RJ. Raman spectroscopy analysis of pigments on 16–17th c. Persian manuscripts. SAA. 2012;92:21-8. https://doi.org/10.1016/j.saa.2012 .02. 020
  19. Clark RJH. Pigment identification by spectroscopic means: an arts/science interface. Comptes Rendus Chimie. 2002;5(1):7-20. https://doi.org/10.1016/S1631-0748(02) 01341-3.
  20. Bracci S, Caruso O, Galeotti M, Iannaccone R, Magrini D, Picchi D, et al. Multidisciplinary approach for the study of an Egyptian coffin (late 22nd/early 25th dynasty): Combining imaging and spectroscopic techniques. Spectrochim Acta A Mol Biomol Spectrosc. 2015;145:511-22. https://doi.org/10.1016/j.saa.2015.02.052.
  21. Costantini I, Castro K, Madariaga JM. Portable and laboratory analytical instruments for the study of materials, techniques and environmental impacts in mediaeval mural paintings. Anal Methods. 2018;10(40):4854-70. https:// doi.org/10.1039/C8AY00871J
  22. Marte F, Careaga VP, Mastrangelo N, de Faria DL, Maier MS. The Sibyls from the church of San Pedro Telmo: a micro‐Raman spectroscopic investigation. J. Raman Spectrosc. 2014;45(11-12):1046-51. https://doi.org/10. 1002/jrs.4616.
  23. Wang X, Zhen G, Hao X, Tong T, Ni F, Wang Z, et al. Spectroscopic investigation and comprehensive analysis of the polychrome clay sculpture of Hua Yan Temple of the Liao Dynasty. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;240:118574. doi: https://doi.org/10.1016/j.saa.2020.118574.
  24. Abdallah M, Moustafa M, Morsi EM, Ali GR. Archaeometric study and conservation of a goddess Bastet statue from the late period of ancient Egypt. International Journal of Conservation Science. 2022;13(2):491-514.
  25. Gard FS, Santos D, Daizo MB, Freire E, Reinoso M, Halac EB. Pigments analysis of an Egyptian cartonnage by means of XPS and Raman spectroscopy. Applied Physics A. 2020;126:1-12. https://doi.org/10.1007/s00339-020-3386-y.
  26. Gard FS, Santos DM, Daizo MB, Mijares JL, Bozzano PB, Danón CA, et al. A noninvasive complementary study of an Egyptian polychrome cartonnage pigments using SEM, EPMA, and Raman spectroscopy. Surf. Interface Anal. 2020;52(11):755-69. https://doi.org/10.1002/sia.6866.
  27. Hussein AM, Madkour FS, Afifi HM, Abdel-Ghani M, Abd Elfatah M. Comprehensive study of an ancient Egyptian foot case cartonnage using Raman, ESEM-EDS, XRD and FTIR. Vib Spectrosc. 2020;106:102987. doi: https://doi.org/10.1016/j.vibspec.2019.102987.
  28. Ali MF, Darwish SS, El Sheikha AM. Multispectral Analysis and Investigation of Overlapping Layer Cartonnage Fragments from Egyptian Museum, Cairo. Sci Cult. 2020;6(3).
  29. He J, Zhou W, Hu D, Liu S, Otero J, Rodriguez-Navarro C. A multi-analytical approach for the characterization of materials, manufacturing process and damage mechanisms of wall paintings in Samye Temple, Tibet. Dyes and Pigments. 2022;207:110704. https://doi.org/10.1016/j. dyepig.2022.110704.
  30. Mazzeo R, Baraldi P, Lujan R, Fagnano C. Characterization of mural painting pigments from the Thubchen Lakhang temple in Lo Manthang, Nepal. J Raman Spectrosc. 2004;35(8‐9):678-85. https://doi. org/ 10.1002/jrs.1203.
  31. Li Z, Wang L, Ma Q, Mei J. A scientific study of the pigments in the wall paintings at Jokhang Monastery in Lhasa, Tibet, China. Herit Sci. 2014;2:21. https://doi.org/ 10.1186/s40494-014-0021-2.
  32. Jin P, Hu Y, Ke Z. Characterization of lacquer films from the middle and late Chinese warring states period 476–221BC. Microsc Res Tech. 2017;80(12):1344-50. https:// doi.org/ 10.1002/jemt.22947.
  33. Konstantas A, Karapanagiotis I, Boyatzis SC. Identification of Colourants and Varnishes in a 14th Century Decorated Wood-Carved Door of the Dionysiou Monastery in Mount Athos. Coat. 2021;11(9):1087. https://doi.org/10.3390/ coatings 11091087.
  34. Tomasini E, Cárcamo J, Castellanos Rodríguez D, Careaga V, Gutiérrez S, Rúa Landa C, et al. Characterization of pigments and binders in a mural painting from the Andean church of San Andrés de Pachama (northernmost of Chile). Herit Sci. 2018;6:61. https://doi.org/10.1186/s40494-018-0226-x.
  35. Aceto M, Agostino A, Fenoglio G, Baraldi P, Zannini P, Hofmann C, Gamillscheg E. First analytical evidences of precious colourants on Mediterranean illuminated manuscripts. Spectrochim Acta A Mol Biomol Spectrosc. 2012;95:235-45. https://doi.org/10.1016/j.saa.2012.04.103.
  36. Chaplin TD, Clark RJ, McKay A, Pugh S. Raman spectroscopic analysis of selected astronomical and cartographic folios from the early 13th century Islamic ‘Book of Curiosities of the Sciences and Marvels for the Eyes’. Journal of Raman Spectroscopy: an International Journal for Original Work in All Aspects of Raman Spectroscopy, including Higher Order Processes, and Also Brillouin and Rayleigh Scattering. 2006;37(8):865-77. https://doi.org/10.1002/jrs.1536.
  37. Nastova I, Grupče O, Minčeva-Šukarova B, Kostadinovska M, Ozcatal M. Spectroscopic analysis of pigments and inks in manuscripts. III. Old-Slavonic manuscripts with multicolored rubication. Vibrational Spectroscopy. 2015;78:39-48. https://doi.org/10.1016/j.vibspec.2015.03 .005.
  38. Zaleski S, Takahashi Y, Leona M. Natural and synthetic arsenic sulfide pigments in Japanese woodblock prints of the late Edo period. Herit Sci. 2018;6(1):32. https://doi.org/10.1186/s40494-018-0195-0.
  39. Luo Y, Basso E, Smith HD, Leona M. Synthetic arsenic sulfides in Japanese prints of the Meiji period. Herit Sci. 2016;4:1-6. https://doi.org/10.1186/s40494-016-0087-0
  40. De Keyser N, Broers F, Vanmeert F, De Meyer S, Gabrieli F, Hermens E, et al. Reviving degraded colors of yellow flowers in 17th century still life paintings with macro-and microscale chemical imaging. Sci Adv. 2022;8(23):eabn6344. https://doi.org/ 10.1126/sciadv.abn6344
  41. Vermeulen M, Sanyova J, Janssens K. Identification of artificial orpiment in the interior decorations of the Japanese tower in Laeken, Brussels, Belgium. Heritage Science. 2015;3(1):9. https://doi.org/10.1186/s40494-015-0040-7.
  42. Vermeulen M, Saverwyns S, Coudray A, Janssens K, Sanyova J. Identification by Raman spectroscopy of pararealgar as a starting material in the synthesis of amorphous arsenic sulfide pigments. Dyes Pigm. 2018;149:290-7. https://doi. org/ 10.1016/j.dyepig.2017.10.009
  43. Haddad A, Pastorelli G, Ortiz Miranda AS, Ludvigsen L, Centeno SA, Duvernois I, et al. Exploring the private universe of Henri Matisse in The Red Studio. Heritage Science. 2022;10(1):1-25. https://doi.org/10.1186/s40494-022-00797-0
  44. Clark RJH, Mirabaud S. Identification of the pigments on a sixteenth century Persian book of poetry by Raman microscopy. Journal of Raman Spectroscopy. 2006;37(1-3):235-9. https://doi.org/10.1002/jrs.1473
  45. Heiyat al-Kottab. In: Hirawi NM, editor. the Art of Bibliography in Islamic civilization. Mashhad: Printing and Publishing Department of Astan Quds Razavi;1993. 499-506 [In Persian].
  46. Aghili Rostamdari H. Calligraphy and ink (Khatt va Morakkab). In: Ndajib Mayil Hirawi, editor. the Art of Bibliography in Islamic civilization. Mashhad: Printing and Publishing Department of Astan Quds Razavi; 1993. [In Persian].
  47. Hossaini A. Ink Making and Book Binding (Morakkab Sazi va Jeld Sazi). In: Hirawi NM, editor. the in the Art of Bibliography in Islamic civilization. Mashhad: Printing and Publishing Department of Astan Quds Razavi;1993 [In Persian].
  48. Eastaugh N, Walsh V, Chaplin T, Siddall R. Pigment compendium: a dictionary of historical pigments: Routledge; 2007.
  49. Ogalde JP, Salas CO, Lara N, Leyton P, Paipa C, Campos-Vallette M, Arriaza B. Multi-Instrumental Identification of Orpiment in Archaeological Mortuary Contexts. J Chil. Chem Soc. 2014;59:2571-3. http://dx.doi.org/10.4067 /S0717-97072014000300010
  50. Karpova E, Nefedov A, Mamatyuk V, Polosmak N, Kundo L. Multi-analytical approach (SEM-EDS, FTIR, Py-GC/MS) to characterize the lacquer objects from Xiongnu burial complex (Noin-Ula, Mongolia). Microchem J. 2017;130:336-44. https://doi.org/10.1016/j.microc.2016 .10 .013.
  51. Lazaridis G, Melfos V, Papadopoulou L. The first cave occurrence of orpiment (As₂S₃) from the sulfuric acid caves of Aghia Paraskevi (Kassandra Peninsula, N. Greece). Int J Speleol. 2011;40(2):6. http://dx.doi.org/ 10.5038/1827-806X.40.2.6.
  52. Barrese E, Maras A, Plescia P. New data on realgar and orpiment from Sasso di Furbara, Latium (Italy). Neues Jahrbuch fur Mineralogie Monatshefte. 1994:167-173.
  53. Cheng H, Zhou Y, Frost RL. Structure comparison of Orpiment and Realgar by Raman spectroscopy. Spectroscopy Letters. 2017;50(1):23-9. https://doi.org/10. 1080/00387010.2016.1277359
  54. Trentelman K, Stodulski L, Pavlosky M. Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem. 1996;68(10):1755-61. https://doi.org/10.1021/ac 951097o.
  55. Vermeulen M, Nuyts G, Sanyova J, Vila A, Buti D, Suuronen J-P, Janssens K. Visualization of As (III) and As (V) distributions in degraded paint micro-samples from Baroque-and Rococo-era paintings. J Anal At Spectrom. 2016;31(9):1913-21. https://doi.org/10.1039/C6JA00134C.
  56. Chua L, Head K, Thomas P, Stuart B. FTIR and Raman microscopy of organic binders and extraneous organic materials on painted ceremonial objects from the Highlands of Papua New Guinea. Microchem J. 2017;134:246-56. https://doi.org/10.1016/j.microc.2017.06.018.
  57. Balakhnina I, Brandt N, Kimberg Y, Rebrikova N, Chikishev A. Variations in the IR spectra of yellow ochre due to mixing with binding medium and drying. JAS. 2011;78(2):183–8. http://dx.doi.org/10.1007%2Fs10812-011-9444-7.
  58. Nemati Babaylou A, Azadi Boyaghchi M, Najafi F, Mohammadi Achachlouei M. Study on Making Temperature and Formation Processes of Persian Resin-Oil Coating of “Kaman Oil”. J Color Sci Tech. 2022;16(1):1-16. https://dorl.net/dor/20.1001.1.17358779.1401.16.1.1.3
  59. Ménager M, Fernandez Esquivel P, Sibaja Conejo P. The use of FT-IR spectroscopy and SEM/EDS characterization of slips and pigments to determine the provenances of archaeological ceramics: The case of Guanacaste ceramics (Costa Rica). Microchem J. 2021;162:105838. https://doi. org/10.1016/j.microc.2020.105838

60.           Cosentino A. FORS Spectral Database of Historical Pigments in Different Binders. Environ Conserv J. 2014;2:57-68.