بررسی روش‌های پیش‌بینی مد و رنگ در صنعت مد پوشاک معاصر: مطالعه موردی دو موسسه پیش‌بینی مد

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه طراحی پارچه و لباس، دانشکده هنر، دانشگاه الزهرا (س)، تهران، ایران، کدپستی: 1993893973.

2 استادیار، گروه طراحی پارچه و لباس، دانشکده هنر، دانشگاه الزهرا (س)، تهران، ایران، کدپستی: 1993893973.

چکیده

در دهه‌ اخیر، فراوانی پژوهش‌ها در مطالعه نقش و کاربرد فناوری در صنعت مد و پیش‌بینی ترندها، نشاندهنده اهمیت موضوع است. پیش‌بینی رنگ نیز از زیرمجموعه‌های ضروری این ساز و کار است که تحت تأثیر تغییرات فناورانه قرار دارد. پژوهش، با هدف تبیین تحولات در شیوه‌های پیش بینی ترند و رنگ به بررسی تغییرات و تفاوت‌های حاصل از تأثیر حضور فناوری‌های جدید در عملکرد پیش‌بینی روند رنگ، در دو موسسه معتبر جهانی با رویکرد کلاسیک و نوین می‌پردازد. پژوهش حاضر با رویکرد توصیفی انجام گرفته و در جمع‌آوری اطلاعات از مطالعه کتابخانه‌ای استفاده شده است. یافته‌ها نشان داد که توسعه راهکارهای هوشمند برای پیش‌بینی ترند مدِ کارآمد و دقیق در این موسسات، مورد توجه قرار گرفته و کاربردی شده است و فناوری هوشمند حتی اگر کاملاً شیوه کار را تغییر نداده باشد و جایگزین نشده باشد، به عنوان ابزاری قابل اطمینان در جهت افزایش سرعت و دقت مورد استفاده قرار می‌گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Exploring Fashion and Color Forecasting Practices in the Contemporary Fashion Apparel Industry: a Case Study of Two Fashion Forecasting Institutions

نویسندگان [English]

  • samira Seif Ali AbbasAbadi 1
  • Roshanak Davari 2
1 Department of Textile and Fashion Design, Faculty of Art, Alzahra University, P. O. Box: 1993893973, Tehran, Iran.
2 Department of Textile and Fashion Design, Faculty of Art, Alzahra University, P. O. Box: 1993893973, Tehran, Iran.
چکیده [English]

In recent decades, the abundance of research on the role of technology and its application in the fashion industry, particularly trend forecasting, shows the importance of this subject. Color forecasting is also one of the essential subsets of this mechanism that is affected by technological changes. The research, to express developments in trend and color forecasting methods with new technologies, examines the changes resulting from the presence of these technologies in the performance of color trend forecasting in two prestigious international institutions with classic and new approaches. This research was conducted with a descriptive approach, and document and library studies were used to collect information. Results showed that the development of smart solutions for efficient and accurate fashion trend forecasting in these forecasting institutions has been highly regarded and applied, and even if AI technology has not completely changed the way of working, it is used as a reliable tool to increase speed and accuracy.

کلیدواژه‌ها [English]

  • Fashion trend forecasting
  • Color forecasting
  • Digital technology
  • Artificial Intelligence
. Zhao L, Li M, Sun P. Neo-fashion: a data-driven fashion trend forecasting system using catwalk analysis. Cloth  Text Res J. 2021;42(1):19-34. http://dx.doi.org/10.1177/ 0887302X211004299.
2. King, J. A. Colour trend forecasting and its influence on the fashion and textile industry. In: A.Briggs-Goode & K. Townsend (Eds.), Textile Design,1st ed.Woodhead Publishing:UK; 2011.193-206.
3. Dashti S, Izadan H, Mahyar F. Colour Forecasting (Part one: Background and Origins). J Stud Color World. 2014; 4(1): 31-37. https://dorl.net/dor/20.1001.1.22517278. 1393. 4.1.5.4 [In Persian].
4. Gu W, Liu X. System of color resource management for fashion color forecasting. in 2010 international conference on management and service science. IEEE, 2010;1-4. http://dx.doi.org/10.1109/ICMSS.2010.5577096.
5. Larsen CG. Digital turn in fashion trend forecasting: An explorative study of artificial intelligence, media platforms, and media users to understand changes in fashion trend forecasting in the digital age [Master thesis]. [Oslo]: University of Oslo;2020.
6. Yu Y, Ng SF, Hui CL, Liu N, Choi TM. Intelligent fashion colour trend forecasting schemes: a comparative study. In Intelligent fashion forecasting systems: models and applications. Springer, Berlin:Heidelberg.2014.147-160. 
7. Chakraborty S, Hoque SA, Kabir SF. Predicting fashion trend using runway images: application of logistic regression in trend forecasting. Int J Fash Des Technol Educ. 2020;13(3):376-386.https://doi.org/10.1080/17543 266.2020.1829096.
8. Choi TM, Hui CL, Ng SF, Yu Y. Color trend forecasting of fashionable products with very few historical data. IEEE Trans Syst Man Cybern. 2011;42(6):1003-1010. https:// doi.org/10.1109/TSMCC.2011.2176725.
9. Giri, C. Data-driven AI techniques for fashion and apparel retailing [PhD thesis], Université de Lille; Högskolan i Borås (Suède); Soochow university.2021.
10. Beheshti-Kashi S, Lutjen M, Stoever L, Thoben KD. trendfashion-a framework for the identification of fashion trends. Informatik, In: Cunningham D, Hofstedt P, Meer K, Schmitt I. Jahrestagung der Gesellschaft für Informatik, Informatik 2015, Informatik, Energie und Umwelt.  Gesells chaft für Informatik;2015.
11. Gladys AO, Olalekan AS A. machine learning model for predicting colour trends in the textile fashion industry in south-west Nigeria. Int J Integr educ. 2021;4(2):174-188. https://doi.org/10.31149/ijie.v4i2.1229.
12.Lai P, Westland S. Machine learning for colour palette extraction from fashion runway images. Int J Fash Des Technol Educ. 2020; 13(3): 334-340.https://doi.org/ 10.1080/17543266.2020.1799080.
13. DuBreuil M, Lu S. Traditional vs. big-data fashion trend forecasting: an examination using WGSN and EDITED. Int J Fash Des Technol Educ. 2020;13(1):68-77.https://doi.org /10.1080/17543266.2020.1732482.
14.Banerjee SS, Mohapatra S, Saha G. Developing a framework of artificial intelligence for fashion forecasting and validating with a case study. Int J Enterp Netw Manag. 2021;12(2):165-180. http://dx.doi.org/10.1504/IJENM. 2021.10039608.
15.Chang LX, Gao WD, Zhang X. Discussion on fashion color forecasting researches for textile and fashion industries. J Fiber Bioeng Inform. 2009;2(1):14-19. https://doi.org/ 10.3993/jfbi06200902
16. DeLong M, Martinson B. Color and design. 1st ed. Bloomsbury Publishing; 2013.
17. Izadan H, Dashti S, Mahyar F. Colour Forecasting (Part2: Trends and Process). J Stud Color World. 2014;4(3):73-84. https://dorl.net/dor/20.1001.1.22517278.1393.4.3.7.0 [In Persian].
18. van Barneveld L, Wubs B. fashion forecasting, gender, and artificial intelligence. In: The routledge history of fashion and dress, 1800 to the Present. Routledge. 2023. 247-265. 
19. Cassidy TD. Colour forecasting. Text Prog. 2019;51(1):1-137.
20. Ma Y, Ding Y, Yang X, Liao L, Wong WK, Chua TS. Knowledge enhanced neural fashion trend forecasting. Proceedings of the 2020 international conference on multimedia retrieval.2020. 82-90.
21. Luce L. Artificial intelligence for fashion: How AI is revolutionizing the fashion industry. 1st ed .Apress;2018. 22.Thomassey S, Zeng X. Introduction: Artificial Intelligence for Fashion Industry in the Big Data Era. In: Artificial intelligence for fashion industry in the big data era. Springer, Singapore. 2018.1-6.
23. WGSN. Available: https://www.wgsn.com/en (Accessed Feb. 2023).
24. Corner J. Expert insight: 5 essential data sources for fashion forecasting.WGSN[ cited 2022 Jul 14]. Availablefrom: https://www.wgsn.com/en/blogs/expert-insight-5-essential-data-sources-fashion-forecasting.
25. .Heuritech. Available: https://www.heuritech.com (Accessed Feb. 2023).
26. Sorbello S. Heuritech: AI for fashion trends.d3.harvard.edu [cited 2022 Apr 18]. Available from: https://d3.harvard .edu/platform-digit/submission/heuritech-ai-for-fashion-trends/.