مروری بر پوشش‏‏ های محافظ ضد‏خوردگی و فرسایش در نیروگاه‏های بادی دریایی

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه مواد غیر فلزی، پژوهشگاه نیرو، تهران، ایران، صندوق‌پستی: 14665517.

2 دانشجوی دکتری، گروه شیمی، دانشگاه کاشان، کاشان، ایران، صندوق‌پستی: ۸۷۱۵۹۹۸۱۵۱.

چکیده

توسعه اخیر نیروگاه بادی دریایی (OWPDs) الزامات بالایی را برای مواد پوشش محافظ در برابر خوردگی و فرسایش ایجاد می‏کند. فرسایش لبه پیشرو (LE) پره‏های توربین بادی یکی از آسیب‏های رایج است که باعث کاهش تولید سالانه انرژی به ویژه در مزارع توربین بادی می‏شود. این فرسایش می‏تواند ناشی از باران، شن و ذرات جامد باشد.  همچنین قسمت‏های فلزی نیروگاه بادی دریایی در معرض محیط حاوی یون کلرید، دچار خوردگی حفره‏ای می‏شوند. پوشش‏های هیبریدی آلی- معدنی (OIHCs) به دلیل خواص برتر خود با ترکیب هر دو جزء معدنی و آلی مورد توجه بسیار زیادی قرار گرفته است. تکنیک سل-ژل روشی مناسب برای تولید پوشش‏های لایه نازک است که می‏تواند از اجزای نیروگاه بادی دریایی در برابر فرسایش و خوردگی محافظت کرده و در عین حال تأثیر ناچیزی بر وزن اجزای نیروگاه به خصوص پره‏های توربین داشته باشد. این مقاله مروری، استراتژی‏های اخیر برای پوشش‏های محافظ‌ OWPD‏ها را خلاصه می‏‏‏‏‏‏‏‏‏‏کند و چشم‏انداز توسعه OIHC‏ها را به عنوان مواد پوششی برای OWPD‏ها ارائه می‏دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of Anti-corrosion and Erosion Protective Coatings in Offshore Wind Power Devices

نویسندگان [English]

  • Majid Mirzaee 1
  • Tayyebeh Mohebbi 2
1 Non-metallic Materials Research Group, Niroo Research Institute, P. O. Box: 14665517, Tehran, Iran.
2 Chemistry Department, Kashan University, P. O. Box:8715998151, Kashan, Iran.
چکیده [English]

The recent development of offshore wind power devices (OWPDs) creates high requirements for protective coating materials against corrosion and erosion. Erosion of the leading edge (LE) of wind turbine blades is one of the common damages that reduces the annual energy production, especially in offshore wind turbine farms. This erosion can be caused by rain, sand, and solid particles. Also, the metal parts of offshore wind power devices suffer from pitting corrosion when exposed to an environment containing chloride ions. Organic-inorganic hybrid coatings (OIHCs) have attracted considerable attention due to their superior properties by combining both inorganic and organic components. The sol-gel technique is a suitable method for producing thin layer coatings that can protect offshore wind power plant components against erosion and corrosion while having a small effect on the power plant's component weight, especially the turbine blades. This review article summarizes the recent strategies for protective coatings of OWPDs and provides a perspective for developing OIHCs as coating materials for OWPDs.

کلیدواژه‌ها [English]

  • Offshore wind power devices
  • Corrosion
  • Erosion
  • Organic-inorganic hybrid coatings
1.  Kurbatova T, Perederii T. Global trends in renewable energy development. IEEE. 2020; 1:260-263. https://doi.org/10.1109/KhPIWeek51551.2020.9250098.
2.  Mirzaee M, Mohebbi T, Rezakhani D. A Comprehensive review of the corrosion and erosion resistant coating on the fireside in power plant boilers. J. Fara.no. 2023;18(82):73-93. https://doi.org/10.22034/FARAYAND NO.2023.2001252. 1920.
3.  Ghaiem Hasankhani T, Gharagozlou, M, Allahkaram SR. a review on providing nanocoating based on nanoparticles of zinc oxide on magnesium alloy az31b by plasma electrolytic oxidation method and its corrosion and antibacterial properties. J. Stud. Color world, 2023; 13(4):421-436 (In Persian) https://doi.org/20.1001.1.22517 278.1402.13.4.6.4
4.  Mohammadsadegh A, Gharagozlou M, Allahkaram SRA. Review on improving the corrosion resistance of 316l stainless steel by coating with nanoparticles of chitosan/gelatin using electrophoretic deposition method. J. Stud. Color world, 2023;12(4):327-341. https://doi.org/ 20.1001.1.22517278.1401.12.4.3.4
5.  DNV G. DNV-OS-J101–Design of offshore wind turbine structures. DNV GL: Oslo, Norway. 2014.
6.  1-8 I. Paints and Varnishes—Corrosion Protection of Steel Structures by Protective Paint Systems. International Organization for Standardization Geneva, Switzerland; 2018.
7.  Ivetić Salopek R. Corrosion protection of steel structures by protective paint systems. zbornik radova (građevinski fakultet sveučilišta u rijeci). 2019;22(1):75-90. https:// doi.org/10.32762/zr.22.1.5
8.  Black AR, Mathiesen T, Hilbert LR, Corrosion protection of offshore wind foundations. Nace Corr. 2015: Nace.
9.  Eom SH, Kim SS, Lee JB. Assessment of anti-corrosion performances of coating systems for corrosion prevention of offshore wind power steel structures. Coat. 2020;10(10):970. https://doi.org/10.3390/coatings101 00970.
10. Pélissier K, Le Bozec N, Thierry D, Larché N. Evaluation of the long-term performance of marine and offshore coatings system exposed on a traditional stationary site and an operating ship and its correlation to accelerated test. Coat. 2022;12(11):1758. https://doi.org/10.3390/coatings12 111758.
11. Li D, Ho SCM, Song G, Ren L, Li H. A review of damage detection methods for wind turbine blades. Smart Mater Struct. 2015;24(3):033001. https://doi.org/10.1088/0964-1726/24/3/033001.
12. Fiore G, Selig MS, Simulation of damage progression on wind turbine blades subject to particle erosion. 54th AIAA Aerospace Sciences Meeting; 2016. https://doi.org/10.2514 /6.2016-0813.
13. Ciang CC, Lee JR, Bang HJ. Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas Sci Technol. 2008;19(12):122001. https:// doi.org/10.1088/0957-0233/19/12/122001.
14. Mirzaee M, Rezaei Abadchi M, Rashidi A. A review of the application of two-dimensional nanosheets as a reinforcement to increase the corrosion resistance of polymer coatings. J. Stud. Color world, 2023;13(2):95-132 (In Persian). https://doi.org/20.1001.1.22517278.1402.13.2.1.5.
15. Kardar P, Amini R. Studying the active corrosion inhibition effect of the ce3+/2-mercaptobenzothiazole loaded nay zeolite/zn-al ldh based containers in a silane coating. Prog Color Color Coat. 2022;15(1):1-9. https://doi.org/10.30509/PCCC.2022.81675.
16. Evren G, Koşak Söz Ç, Özomay Z, Uzun M, Sönmez S. Effect of the Coating formulation on the barrier properties and final appearance of non-wettable hybrid paper sheets. Prog Color Color Coat. 2024;17(3):239-62. https://doi.org/10.30509/PCCC.2024.167221.1257
17. Karmouch R, Ross GG. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy. Appl Surf Sci. 2010;257(3):665-9. https://doi.org/10.1016/j.apsusc.2010.07.041
18. Hunt BJ, James MI. Polymer characterisation: Springer Science & Business Media; 2012.
19. Larsen FM, New lightning qualification test procedure for large wind turbine blades. International Conference on Lightning and Static Electricity (ICLOSE), Blackpool, 2003; https://doi.org/10.1541/ieejp es.129.331.
20. Ding R, Chen S, Lv J, Zhang W, Zhao X-d, Liu J, et al. Study on graphene modified organic anti-corrosion coatings: A comprehensive review. J Alloys Compd. 2019;806:611-35. https://doi.org/10.1016/j.jall com.2019. 07.256.
21. Saparov B, Mitzi DB. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 2016;116(7):4558-96. https://doi.org/10.1021/ acs.chemrev.5b00715.
22. Mirzaee M, Seif A, Rashidi A, Silvestrelli PL, Zhou Z, Pourhashem S, et al. Investigating the effect of PDA/KH550 dual functionalized h-BCN nanosheets and hybrided with ZnO on corrosion and fouling resistance of epoxy coating: Experimental and DFT studies. J Environ Chem Eng. 2022;10(6):108746. https://doi.org/ 10.1016/j.jece.2022.108746.
23. Mirzaee M, Rashidi A, Seif A, Silvestrelli PL, Pourhashem S, Gohari MS, Duan J. Amino-silane co-functionalized h-BN nanofibers with anti-corrosive function for epoxy coating.  React Funct Polym. 2022;174:105244. https://doi.org/10.1016/j.reactfunctpolym.2022.105244.
24. Fu P, Huang M, Shang Y, Yu N, Zhou HL, Zhang YB, et al. Organic− Inorganic layered and hollow tin bromide perovskite with tunable broadband emission. ACS Appl Mater Interfaces. 2018;10(40):34363-9. https:// doi.org/10.1021/acsami.8b07673.
25. Mao L, Wu Y, Stoumpos CC, Traore B, Katan C, Even J, et al. Tunable white-light emission in single-cation-templated three-layered 2d perovskites (ch3ch2nh3) 4pb3br10–xclx. J Am Chem Soc. 2017;139(34):11956-63. https://doi.org/10.1021/jacs.7b06143.
26. Lin K, Xing J, Quan LN, de Arquer FPG, Gong X, Lu J, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature. 2018;562(7726):245-8. https://doi.org/10.1038/s41586-018-0575-3.
27. Quan LN, García de Arquer FP, Sabatini RP, Sargent EH. Perovskites for light emission. Adv. Mater. 2018;30(45):1801996. https://doi.org/10.1002/adma. 201801996.
28. Zvonkina I, Soucek M. Inorganic–organic hybrid coatings: common and new approaches. Curr Opin Chem Eng. 2016;11:123-7. 10.1016/j.coche.2016.01.008
29. Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol−gel approach. Chem Mater. 1996;8(8):1667-81. https://doi.org/10.1021/ cm9601143
30. Momber A, Marquardt T. Protective coatings for offshore wind energy devices (OWEAs): A review. J. Coat. Technol. Res. 2018;15(1):13-40. https://doi.org/ 10.1007/ s11998-017-9979-5
31. Bilgili M, Yasar A, Simsek E. Offshore wind power development in Europe and its comparison with onshore counterpart. Renew. Sust. Energ. Rev. 2011;15(2):905-15. https://doi.org/10.1016/j.rser.2010.11.006.
32. Liu T, Tavner P, Feng Y, Qiu Y. Review of recent offshore wind power developments in china. Wind. energy. 2013;16(5):786-803. https://doi.org/10.1002/we.1523.
33. Hu H, Hu Z, Zhong K, Xu J, Wu P, Zhao Y, Zhang F. Long-term offshore wind power prediction using spatiotemporal kriging: A case study in China’s Guangdong Province. Energy Explor Exploit. 2020;38(3):703-22. https://doi.org/10.1177 /014459 87198893.
34. Karimirad M, Karimirad M. Combined wave-and wind-power devices. offshore energy structures: for wind power, wave energy and hybrid marine platforms. 2014:105-28. https://doi.org/10.1007/978-3-319-12175-8_6.
35. Dong W, Moan T, Gao Z. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliab. Eng. Syst. Saf. 2012;106:11-27. https://doi.org/ 10.1016/j.ress.2012.06.011.
36. Marzec I, Bobiński J, Tejchman J, Schönnagel J. Finite element analysis on failure of reinforced concrete corner in sewage tank under opening bending moment. Eng Struct 2021;228:111506. https://doi.org/10.1016/j.engstruct. 2020.111506.
37. Kirchgeorg T, Weinberg I, Hörnig M, Baier R, Schmid M, Brockmeyer B. Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment. Mar Pollut Bull. 2018;136:257-68. https://doi.org/10.1016/j.marpolbul .2018.08.058
38. Moghaddam BT, Hamedany AM, Mehmanparast A, Brennan F, Nikbin K, Davies CM. Numerical analysis of pitting corrosion fatigue in floating offshore wind turbine foundations. Procedia Struct. Integr. 2019;17:64-71. https:// doi.org/10.1016/j.prostr.2019.08.010.
39. Price SJ, Figueira RB. Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coat. 2017;7(2):25. https://doi. org/10.3390/coatings7020025.
40. Adedipe O, Brennan F, Kolios A. Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector. Renew Sust Energ Rev. 2016;61:141-54. https://doi.org/10.1016/j.rser. 2016.02.017.
41. Wang D, Xu J, Yang J, Zhou S. Preparation and synergistic antifouling effect of self-renewable coatings containing quaternary ammonium-functionalized SiO2 nanoparticles. J Colloid Interface Sci. 2020;563:261-71. https://doi.org/ 10.1016/j.jcis.2019.12.086.
42. Han W, Kim J, Kim B. Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew Energ. 2018;115:817-23. https://doi.org/10.1016/j.renene.2017. 09.002.
43. Castorrini A, Corsini A, Rispoli F, Venturini P, Takizawa K, Tezduyar TE. Computational analysis of wind-turbine blade rain erosion. Comput Fluids. 2016;141:175-83. https://doi.org/10.1016/j.compfluid.2016.08.013.
44. Zhang S, Dam-Johansen K, Bernad Jr PL, Kiil S. Rain erosion of wind turbine blade coatings using discrete water jets: Effects of water cushioning, substrate geometry, impact distance, and coating properties. Wear. 2015;328:140-8. https://doi.org/10.1016/j.wear.2015. 01.079.
45. O'Carroll A, Hardiman M, Tobin E, Young T. Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation. Wear. 2018;412:38-48. https://doi.org/10.1016/j.wear. 2018.07.008.
46. Ahuir-Torres J, Simandjuntak S, Bausch N, Farrar A, Webb S, Nash A, et al. Corrosion threshold data of metallic materials in various operating environment of offshore wind turbine parts (tower, foundation, and nacelle/gearbox). Data in brief. 2019;25:104207. https://doi.org/10.1016/j.dib.2019.104207.
47. Li M, Kefal A, Oterkus E, Oterkus S. Structural health monitoring of an offshore wind turbine tower using iFEM methodology. Ocean Eng. 2020;204:107291. https:// doi.org/10.1016/j.oceaneng.2020.107291.
48. Igwemezie V, Mehmanparast A, Kolios A. Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Mar Struct. 2018;61:381-97. https://doi.org/10.1016/j.marstruc.2018.06.008.
49. Storm BK. Surface protection and coatings for wind turbine rotor blades.  Advances in wind turbine blade design and materials: Elsevier; 2013. 417-40. https://doi .org/10.1016/B978-0-08-103007-3.00012-4.
50. Prashar G, Vasudev H, Thakur L. Performance of different coating materials against slurry erosion failure in hydrodynamic turbines: A review. Eng. Fail. Anal. 2020;115:104622.https://doi.org/10.1016/j.engfailanal .2020.104622.
51. Márquez FPG, Chacón AMP. A review of non-destructive testing on wind turbines blades. Renew. Energ. 2020;161:998. https://doi.org/1010. 10.1016/j.renene.2020. 07.145.
52. Singh S, Kharub M, Singh J, Singh J, Jangid V. Brief survey on mechanical failure and preventive mechanism of turbine blades. Mater Today Proc. 2021;38:2515-24. https://doi.org/10.1016/j.matpr.2020.07.546
53. Lee C. Corrosion and wear-corrosion resistance properties of electroless Ni–P coatings on GFRP composite in wind turbine blades. Surf Coat Technol.  2008;202(19):4868-74. https://doi.org/10.1016/j.surfcoat.2008.04.079
54. Qin CC, Mulroney AT, Gupta MC. Anti-icing epoxy resin surface modified by spray coating of ptfe teflon particles for wind turbine blades. Mater Today Commun. 2020;22:100770. https://doi.org/10.1016/j.mtcomm. 2019. 100770
55. Slot H, Gelinck E, Rentrop C, Van Der Heide E. Leading edge erosion of coated wind turbine blades: review of coating life models.  Renew Energ. 2015;80:837-48. https://doi.org/10.1016/j.renene.2015.02.036.
56. Mishnaevsky Jr L, Sütterlin J. Micromechanical model of surface erosion of polyurethane coatings on wind turbine blades. Polym. Degrad. Stab. 2019;166:283-9. https://doi.org/ 10.1016/j.polymdegradstab.2019.06.009.
57. Zhang S, Dam-Johansen K, Nørkjær S, Bernad Jr PL, Kiil S. Erosion of wind turbine blade coatings–design and analysis of jet-based laboratory equipment for performance evaluation. Prog Org Coat. 2015;78:103-15. https://doi.org/ 10.1016/j.porgcoat.2014.09.016.
58. Oka Y, Miyata H. Erosion behaviour of ceramic bulk and coating materials caused by water droplet impingement. Wear. 2009;267(11):1804-10. https://doi.org/10.1016/ j.wear.2009.02.009.
59. Caruso RA, Antonietti M. Sol− gel nanocoating: an approach to the preparation of structured materials. Chem Mater. 2001;13(10):3272-82. https://doi.org/10.1021 /cm001257z.
60. Marinova N, Urbegain A, Benguria P, Travé A, Caracena R. Evaluation of anticorrosion coatings for offshore wind turbine monopiles for an optimized and time-efficient coating application. Coat. 2022;12(3):384. https://doi. org/10.3390/coatings12030384
61. Zuin S, Gaiani M, Ferrari A, Golanski L. Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. J Nanopart Res . 2014;16:1-17. https://doi.org/10.1007/s11051-013-2185-1
62. Veselov V, Kitaev M, Pastukhov P, Surov O, editors. Tests of paint and varnish ice-resistant protective coatings of ice class vessels. IOP Conference Series. Mater Sci Eng. 2020: https://doi.org/10.1088/1757-899X/986/ 1/012027.
 63.           ISO E. 2178: 2016 Non-magnetic coatings on magnetic substrates. Measurement of coating thickness Magnetic method European Standard. 2016.
64. Kryvenko PV, Guzii SG, Bondarenko OP, editors. Alkaline aluminosilicate binder-based adhesives with increased fire resistance for structural timber elements. Key Engineering Materials;2019: https://doi.org/ 10.4028/www. scien tific.net/KEM.808.172
65. Ford T. Royal Aeronautical Society Annual Conference. Aircr Eng Aerosp Technol. 2006;78(2). https://doi.org/ 10.1108/aeat.2006.12778bac.001
66. Choi CH, Kim CJ. Advanced nanostructured surfaces for the control of biofouling: cell adhesions to three-dimensional nanostructures.  Green tribology: biomimetics, energy conservation and sustainability: Springer; 2012. 79-103. https://doi.org/10.1007/978-3-642-23681-5_4
67. Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance. Renew Sust Energ Rev. 2009;13(2):428-38. https://doi.org/ 10.1016/j.rser.2007.11.009
68. Corten GP, Veldkamp HF. Insects can halve wind-turbine power. Nature. 2001;412(6842):41-2. https://doi.org/ 10.1038/ 35083698.
69. Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem. Soc. Rev. 2011;40(2):696-753. https://doi.org/10.1039/C0CS00136H.
70. Beilin HI, Shapovalov L. US PATENT DOCUMENTS. 2010.
71. Keijman J. Inorganic-organic hybrid coatings in the protective coatings industry. Proceedings, SSPC. 2002.
72. Yeter B, Garbatov Y, Soares CG. Fatigue damage assessment of fixed offshore wind turbine tripod support structures. Eng. Struct. 2015;101:518-28. https://doi.org /10.1016/j.coche.2016.01.008.
73. Mirzaee M, Mohebbi T, Rezaei Abadchi M. A review of advances in encapsulation processes and self-healing mechanisms for active corrosion protection. Nashrieh Shimi va Mohandesi Shimi Iran. 2023 (In Persian).
74. Mirzaee M, Rezaei Abadchi M, Mehdikhani A, Riahi Noori N, Zolriasatein A. Corrosion and UV resistant coatings using fluoroethylene vinyl ether polymer. Prog. Color. Color. Coat. 2023;16(1):47-57. https://doi.org/20.1001.1.20082134.2023.16.1.1.6.
75. Amiri S, Rahimi A. Hybrid nanocomposite coating by sol–gel method: A review. Iran. Polym. J.2016;25:559-77. https://doi.org/10.1007/s13726-016-0440-x.
76. Mirzaee M, Rezaei Abadchi M, Rashidi A. A Review of the Application of Two-dimensional Nanosheets as a Reinforcement to Increase the Corrosion Resistance of Polymer Coatings. J. Stud. Color world. 2023;13(2):95-132. (In Persian)  https://doi.org/20.1001.1.22517278.1402. 13.2.1.5.
77. Zhong H, Hu Y, Wang Y, Yang H. TiO2/silane coupling agent composed of two layers structure: A super-hydrophilic self-cleaning coating applied in PV panels. Appl. Energy. 2017;204:932-8. https://doi.org/10.1016/j. apenergy.2017.04.057.
78. Rezaei Abadchi M, Mirzaee M, Dorkhani E, Zolriasatein A, Noori NR. Surface modification of acrylic coating with anti‐corrosion and anti‐UV materials. J Chin Chem Soc. 2022;69(6):912-24. https://doi.org/10.1002/jccs.202200 169.
79. Ji X, Seif A, Duan J, Rashidi A, Zhou Z, Pourhashem S, et al. Experimental and DFT studies on corrosion protection performance of epoxy/graphene quantum dots@ TiO2 nanotubes coatings. Constr Build Mater. 2022;322:126501. https://doi.org/10.1016/j.conbuildmat.2022.126501.
80. Zhou Z, Seif A, Pourhashem S, Duan J, Rashidi A, Silvestrelli PL, et al. Multi-treatments based on polydimethylsiloxane and metal-organic framework wrapped with graphene oxide for achieving long-term corrosion and fouling protection: experimental and density functional theory aspects. Constr. Build. Mater. 2023;384:131229. https://doi.org/10.1016/j. conbui ldmat.2023.131229
81. Zhou Z, Seif A, Pourhashem S, Duan J, Rashidi A, Mirzaee M, et al. Anti-corrosion and anti-fouling properties of ball-like GQDs hybrided MOFs functionalized with silane in waterborne epoxy-polydimethylsiloxane coatings: experimental and theoretical studies. Appl Mater Today. 2023;30:101704. https://doi.org/10.1016/j.apmt.2022. 101704.
82. Nguyen HL, Gándara F, Furukawa H, Doan TL, Cordova KE, Yaghi OM. A titanium–organic framework as an exemplar of combining the chemistry of metal–and covalent–organic frameworks. J Am Chem Soc. 2016;138(13):4330-3. https://doi.org/10.1021/ jacs.6b01233.
83. Salomatina E, Bityurin N, Gulenova M, Gracheva T, Drozdov M, Knyazev A, et al. Synthesis, structure, and properties of organic–inorganic nanocomposites containing poly (titanium oxide). J Mater Chem C. 2013;1(39):6375-85. https://doi.org/10.1039/C3TC30432A.
84. Pourhashem S, Seif A, Saba F, Nezhad EG, Ji X, Zhou Z, et al. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies.  J Mater Sci. Technol. 2022;118:73-113. https://doi.org/10.1016/j.jmst .2021. 11.061.
85. Guo F, Gao J, Li X. Research Progress on Titanium-Containing Organic–Inorganic Hybrid Protective Coatings. Surf. Rev. Lett. 2019;26(09):1930002. https://doi.org/ 10.1142/S0218625X19300028.
86. Ballard R, Williams J, Njus J, Kiland B, Soucek M. Inorganic–organic hybrid coatings with mixed metal oxides. Eur Polym J. 2001;37(2):381-98. https://doi.org/ 10.1016/S0014-3057(00)00105-1.
87. Li S, Fu J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping. Corros. Sci. 2013;68:101-10. https://doi.org/10.1016/j.corsci.2012. 10.040.
88. Grundwürmer M, Nuyken O, Meyer M, Wehr J, Schupp N. Sol–gel derived erosion protection coatings against damage caused by liquid impact. Wear. 2007;263(1-6):318-29. https://doi.org/10.1016/j.wear.2006.12.039
89. Hojjati Najafabadi A, Shoja Razavi R, Mozaffarinia R, Rahimi H. A new approach of improving rain erosion resistance of nanocomposite sol-gel coatings by optimization process factors. Metall Mater Trans. A. 2014;45:2522-31. https:// doi.org/10.1007/s11661-013-2180-2.
90. Dashtkar A, Hadavinia H, Sahinkaya MN, Williams NA, Vahid S, Ismail F, Turner M. Rain erosion-resistant coatings for wind turbine blades: A review. Polym. Polym Compos. 2019;27(8):443-75. https://doi.org/ 10.1177/ 096739111984823.
91. Jung de Andrade M, Lima MD, Stein L, Pérez C, Roth S. Single‐walled carbon nanotube silica composites obtained by an inorganic sol–gel route. Phys. Status. Solidi. B. 2007;244(11):4218-22. https://doi.org/10.1002/pssb.2007 76114.
92. Hosseinpour A, Abadchi MR, Mirzaee M, Tabar FA, Ramezanzadeh B. Recent advances and future perspectives for carbon nanostructures reinforced organic coating for anti-corrosion application. Surf Interfaces. 2021;23:100994. https://doi.org/10.1016/j.surfin. 2021.100994.
93. Vadukumpully S, Gupta J, Zhang Y, Xu GQ, Valiyaveettil S. Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale. 2011;3(1):303-8. https://doi.org/10.1039/ C0N R00547A.
94. Pathak SM, Kumar VP, Bonu V, Mishnaevsky Jr L, Lakshmi R, Bera P, Barshilia HC. Development of Cellulose-Reinforced Polyurethane Coatings: A Novel Eco-Friendly Approach for Wind Turbine Blade Protection. Energies. 2023;16(4):1730. https://doi.org/ 10.3390/en16041730.
95. Pathak SM, Kumar VP, Bonu V, Latha S, Mishnaevsky Jr L, Lakshmi R, et al. Solid particle erosion studies of ceramic oxides reinforced water-based PU nanocomposite coatings for wind turbine blade protection. Ceram Int. 2022;48(23):35788-98. https://doi.org/10.1016/j. ceramint.2022.07.143.
96. Alajmi AF, Ramulu M. Solid particle erosion of graphene-based coatings. Wear. 2021;476:203686. https://doi.org/ 10.1016/j.wear.2021.203686
97. Mishra P, Acharya S. Solid particle erosion of bagasse fiber reinforced epoxy composite.  Int J Phys Sci. 2010;5(2):109-15.
98. Mantry S, Satapathy A, Jha AK, Singh SK, Patnaik A. Preparation, characterization and erosion response of jute-epoxy composites reinforced with SiC derived from rice husk.  Int J Plast Technol. 2011;15:69-76. https://doi.org/ 10.1007/s12588-011-9007-z.
99. Padhi PK, Satapathy A. Prediction and simulation of erosion wear behavior of glass-epoxy composites filled with blast furnace slag. Adv. Mat. Res. 2012;585:549-53.  https://doi.org/10.4028/www.scientific.net/AMR.585.549.
100. Das G, Biswas S. Erosion wear behavior of coir fiber-reinforced epoxy composites filled with Al2O3 filler. J. Ind. Text. J IND TEXT. 2017;47(4):472-88. https://doi.org/ 10.1177/15280837166528
101. Latha PS, Rao MV. Investigation into effect of ceramic fillers on mechanical and tribological properties of bamboo-glass hybrid fiber reinforced polymer composites. Silicon. 2018;10:1543-50. https://doi.org/10.1007/s12633-017-9637-7
102. Singh T, Tejyan S, Patnaik A, Singh V, Zsoldos I, Fekete G. Fabrication of waste bagasse fiber‐reinforced epoxy composites: study of physical, mechanical, and erosion properties. Polym Compos. 2019;40(9):3777-86. https:// doi.org/10.1002/pc.25239
103. Deep N, Mishra P, editors. Study and optimization of erosive behavior of carbon black–epoxy polymer composites using taguchi method. Innov. Adv. Mater. Sci. Eng. 2017, Volume 2; 2019: Springer. https://doi. org/10.1007/978-981-13-2944-9_21
104. Öztürk B, Gedikli H, Kılıçarslan YS. Erosive wear characteristics of E‐glass fiber reinforced silica fume and zinc oxide‐filled epoxy resin composites. Polym Compos. 2020;41(1):326-37. https://doi.org/10.1002/pc.25372
105. Bagci M, Demirci M, Sukur EF, Kaybal HB. The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites. Wear. 2020;444:203159. https://doi.org/10.1016/ j.wear. 2019. 203159
106. Aghaebrahimi, M. R., Taherian, H., Nazer-Kakhki, I., Farshad, M., Goldani, S. R. Short Term Price Forecasting in Electricity Market Considering the Effect of Wind Units' Generation. Computational Intelligence Electrical Eng. 2014; 5(1):105-122.