سنتز سبز نانوذرات اکسید مس (II) با استفاده از عصاره پوست پسته و بررسی توانایی نانوذرات سنتز‌شده در تخریب مواد رنگزا آلی

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار،گروه شیمی ، دانشکده علوم پایه ، دانشگاه ولی عصر رفسنجان ، رفسنجان، صندوق‌پستی: 518.

2 کارشناسی ارشد، گروه شیمی ، دانشکده علوم پایه ، دانشگاه ولی عصر رفسنجان ، رفسنجان، صندوق‌پستی: 518.

3 دانشیار، گروه فیزیک ، دانشکده علوم پایه ، دانشگاه ولی عصر رفسنجان ، رفسنجان، صندوق‌پستی: 518.

10.30509/jscw.2024.167316.1190

چکیده

در این پژوهش با استفاده از عصاره‌‌ پوست پسته، نانوذرات اکسید مس (II) سنتز شدند. ترکیبات شیمیایی موجود در پوست پسته می‌توانند به عنوان پایدار کننده در سنتز نانوذرات اکسید مس (II) کمک کنند. نانوذرات سنتز‌شده با روش‌های میکروسکوپ الکترونی روبشی (SEM)، الگوی پراش پرتو ایکس (XRD)، طیف‌سنجی انرژی پراش اشعه ایکس (EDAX)، طیف سنج فرابنفش- مرئی (UV-Vis) و طیف تبدیل فوریه فروسرخ (FT-IR) شناسایی و مشخصه‌یابی شدند. با توجه به تصاویر SEM نانوذرات به دست آمده، تقریبا کروی شکل و نامنظم با اندازه تقریبی متغیر در بازه 90 تا 120 نانومتر هستند. نانوذرات اکسید مس (II) سنتز‌شده به عنوان کاتالیزور نوری در تخریب مواد رنگزای آلی ایوسین Y‌، متیلن بلو و رودامین B تحت تابش نور مرئی و فرابنفش مورد استفاده قرار گرفتند و بررسی نتایج تخریب مواد رنگزای آلی با استفاده از طیف‌‌های جذبی فرابنفش- مرئی نتایج قابل توجهی را نشان داد. بیشترین درصد تخریب رنگ مربوط به رنگ ایوسین Y به میزان 93 درصد تحت تابش فرابنفش به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Green synthesis of Copper (II) Oxide Nanoparticles Using Peel Extract of Pistachio and Investigation the Ability of Synthesized Nanoparticles in the Degradation of Organic Dyes

نویسندگان [English]

  • Samira Saeednia 1
  • Haneih Yousefpour 2
  • Parvaneh Iranmanesh 3
  • Sobhan Abbasi Razgaleh 2
1 Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, P. O. Box: 518, Rafsanjan, Iran.
2 Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, P. O. Box: 518, Rafsanjan, Iran.
3 Department of Physics, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, P. O. Box: 518, Rafsanjan, Iran.
چکیده [English]

This research aims to synthesize copper (II) oxide nanoparticles using pistachio peel extract. The chemical compounds in pistachio skin can help as stabilizers in synthesizing copper (II) oxide nanoparticles. Synthesized nanoparticles were identified and characterized by scanning electron microscope (SEM), X-ray diffraction pattern (XRD), X-ray energy diffraction spectroscopy (EDAX), ultraviolet-visible spectrometer (UV-Vis), and Fourier transform infrared spectrum (FT-IR). According to the SEM images, the obtained nanoparticles have almost spherical and irregular shapes with variable approximate sizes ranging from 90 to 120 nm. The synthesized copper(II) oxide nanoparticles were used as photocatalysts in the degradation of eosin Y, methylene blue, and rhodamine B dyes under visible and ultraviolet light irradiation, and the investigation of the results of dye degradation using ultraviolet-visible absorption spectra showed significant results. The highest percentage of dye degradation was obtained by 93% under UV radiation related to Eosin Y.

کلیدواژه‌ها [English]

  • Green Synthesis
  • Copper (II) oxide nanoparticles
  • Photocatalyst
  • Degradation
  • Organic dyes
  • Pistachio's peel
1.      Kumar N, Verma S, Park J, Srivastava VC, Naushad M. Evaluation of photocatalytic performances of PEG and PVP capped zinc sulfide nanoparticles towards organic environmental pollutant in presence of sunlight. Chemosphere. 2022;298:134281. https://doi.org/10.1016/j. chemosphere.2022.134281
2.      Salmani M, Abedi M, Mozaffari S, Ehrampoush M. Nanotechnology and water pollutants removal. Tolooebehdasht. 2014;12(4):242-55.
3.      Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, et al. Nanocrystals as stoichiometric reagents with unique surface chemistry. The Journal of Physical Chemistry. J Phys Chem.1996;100(30):12142-53. https://doi.org/10.1021/jp960224x
4.      Srivastava S. Synthesis and characterisation of copper oxide nanoparticles. IOSR-JAP. 2013;5:61-5.
5.      Khadivi Ayask, H, Vahdati Khaki J, Haddad Sabzevar M. Facile synthesis of copper oxide nanoparticles using copper hydroxide by mechanochemical process. JUFGNSM. 2015;48(1):37-44. https://doi. org/10.7508/jufgnsm.2015.01.006
6.      Al-Hakkani MF. Biogenic copper nanoparticles and their applications: A review. SN App Sci. 2020;2(3):505 .https://doi.org/10.1007/s42452-020-2279-1.
7.      Vaccaro-luigi L. Luigi Vaccaro. Beilstein. J Org Chem. 2016;12:2763-5. https://doi.org/10.3762/bjoc.12.273. 
8.      Ismail DNG. The effect of a proposed unit in green chemistry on developing economic awareness and the trend towards its study amongst student teachers at the faculty of education. Egypt J Sci Educ. 2019;22(1):91-147. https://doi.org/10.21608/MKTM.2019 .113798.
9.      Azadedel S, Hanachi P, Saboora A. Antioxidant Activity and Phenolic Compound Profile of Pistachio Skins (Pistacia vera L., Cultivars Kallehghuchi and Ohadi). Hormozgan Med. J. 2020;25:180-6. https://doi: 10.5812/hmj.106093
10.   Grace MH, Esposito D, Timmers MA, Xiong J, Yousef G, Komarnytsky S, Lila MA. In vitro lipolytic, antioxidant and anti-inflammatory activities of roasted pistachio kernel and skin constituents. FOOD FUNCT. 2016;7(10):4285-98. https://doi.org/10.1039/C6FO00867D
11.   Chakraborty N, Banerjee J, Chakraborty P, Banerjee A, Chanda S, Ray K, et al. Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chem Lett Rev. 2022;15(1):187-215. https://doi.org/10.1080/17518253.2022.2025916.
11.
12.   Alwan RM, Kadhim QA, Sahan KM, Ali RA, Mahdi RJ, Kassim NA, et al. Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization.  J Nanosci Nanotechnol. 2015;5(1):1-6. https://doi. org/10.5923/j.nn.20150501.01.
13.   Ao W, Li J, Yang H, Zeng X, Ma X. Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technol. 2006;168(3):148-51. https://doi.org/10.1016/j.powtec.2006.07.014.
14.   Raghunandan D, Mahesh BD, Basavaraja S, Balaji S, Manjunath S, Venkataraman A. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J. Nanoparticle Res. 2011;13:2021-8. https://doi. org/10.1007/s11051-010-9956-8
15.   Pathania D, Gupta D, Ala’a H, Sharma G, Kumar A, Naushad M, et al. Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ZnS in presence of solar irradiation. J Photochem Photobiol. A 2016;329:61-8. https://doi.org/10.1016/j.jphotochem. 2016.06.019.
16.   Ramesh P, Saravanan K, Manogar P, Johnson J, Vinoth E, Mayakannan M. Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sens Bio-Sens Res. 2021;31:100399. https://doi.org/10.1016/j.sbsr. 2021.100399.   
17.   Radhakrishnan AA, Beena BB. Structural and optical absorption analysis of CuO nanoparticles. Indian J Adv Chem Sci. 2014;2(2):158-61.
18.   Iranmanesh P, Saeednia S, Nourzpoor M. Characterization of ZnS nanoparticles synthesized by co-precipitation method. Chin Phys B. 2015;24(4):046104. https://doi.org/10.1088/1674-1056/24/4/046104
19.   Neetzel C, Münch F, Schachtsiek A, Ensinger W. Copper Nanowires, Nanotubes, and Hierarchical Nanopatterns: One-Dimensional Architectures using Ion Track Etched Templates. Trans Mat Res Soc Japan. 2012;37(2):213-8. https://doi.org/10.14723/tmrsj.37.213.
20.    Sonia S, Poongodi S, Kumar PS, Mangalaraj D, Ponpandian N, Viswanathan C. Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes. Mater Sci Semicond Process. 2015;30:585-91. https://doi.org/ 10.1016/j.mssp.2014.10.012.  
21.   de Lara LS, Rigo VA, Miranda CR. The stability and interfacial properties of functionalized silica nanoparticles dispersed in brine studied by molecular dynamics. Eur Phys J B. 2015;88:1-10. https://doi.org/10.1140/epjb/e2015-60543-1 .