مروری بر پلیمرهای قالب یونی در حذف و شناسایی رنگ‌سنجی سرب: تهیه، سازوکار و کاربرد

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناسی ارشد، گروه محیط زیست، دانشکده معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران، صندوق‌پستی: 316.

2 استادیار، گروه پژوهشی محیط زیست و رنگ، پژوهشگاه رنگ، تهران، ایران، صندوق پستی: 654-16765.

3 دانشیار، گروه محیط زیست، دانشکده معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران، صندوق پستی: 316.

10.30509/jscw.2024.167332.1195

چکیده

تجمع یون‌‌های فلزات سنگین در اکوسیستم‌ها، تهدیدی برای انسان و سایر جانداران می‌باشد و می‌تواند باعث بیماری‌های مختلفی مانند سرطان، بیماری‌های پوستی، قلبی- عروقی و اختلالات خونی شود. بنابراین جذب و شناسایی یون‌های فلزات سنگین به طور مداوم مورد نیاز است. روش جذب به دلیل انعطاف‌پذیری، سرعت و سهولت استفاده، تاثیر کمتر بر محیط‌زیست و هزینه کمتر مورد استقبال قرار گرفته است. از میان انواع جاذب‌ها، پلیمر‌های قالب یونی به دلیل انتخاب‌پذیری زیاد، فاکتور تغلیظ بالا و پایداری شیمیایی مناسب، برای شناسایی و حذف یون‌های مختلف فلزی مورد توجه قرار گرفته‌اند. این مطالعه فهرستی از مطالعات انجام شده طی دو دهه گذشته را مورد بررسی قرار می‌دهد. در بخش اول، روش‌ها، اجزا و روش‌های اصلی بسپارش برای تهیه پلیمر قالب یونی توضیح داده شده‌اند و در بخش دوم متغیرهای سنتز، عملکرد جذب و تحلیل پلیمر‌های قالب یونی به عنوان جاذب فلزات سنگین ارائه شده‌اند. بعلاوه، با توجه به کاربرد پلیمرهای قالب یونی در تهیه حسگرها، در بخش پایانی، به کاربرد پلیمرهای قالب یونی در شناسایی رنگ سنجی فلزات سنگین از جمله سرب پرداخته خواهد شد که بدین‌منظور استفاده از لیگاندهای اختصاصی جهت ایجاد تغییر رنگ مناسب از اهمیت ویژه‌ای برخوردارند. لذا، نتایج این تحقیقات حاکی از کاربرد موفقیت آمیز پلیمرهای قالب یونی برای حذف و شناسایی رنگ سنجی کاتیون‌های سرب از محیط‌های آبی می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of Ion-imprinted Polymer for the Removal and Colorimetric Detection of Lead: Preparation, Mechanism and Application

نویسندگان [English]

  • Leila Peik-Rayekan 1
  • Nargess Yousefi-Limaee 2
  • Kumars Seifpanahi-Shabani 3
1 Department of Mining Engineering, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, P. O. Box: 316, Shahrood, Iran.
2 Department of Environmental Research, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran.
3 Department of Mining Engineering, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, P. O. Box: 316, Shahrood, Iran.
چکیده [English]

The accumulation of heavy metal ions in ecosystems poses a significant threat to humans and other organisms, leading to various diseases such as cancer, skin diseases, cardiovascular and blood disorders. Therefore, the adsorption and detection of heavy metal ions is constantly needed. The adsorption method is favored due to its flexibility, speed, ease of use, minimal environmental impact, and cost-effectiveness. 00Among various adsorbents, ion-imprinted polymers (IIPs) have garnered attention for the identification and removal of metal ions due to their high selectivity, significant concentration factor, and robust chemical stability .This study reviews research conducted over the past two decades. The first section covers the primary polymerization methods, components, and techniques used in producing IIPs. The second section delves into synthesis parameters, adsorption performance, and the use of IIPs as sorbents for heavy metals. Additionally, the final section discusses the application of IIPs in the colorimetric detection of heavy metals, particularly lead ions. The use of specific ligands to induce a detectable color change is emphasized as a key factor in this process. The results of this study highlight the successful application of IIPs for both the removal and colorimetric detection of lead ions in aqueous solutions.

کلیدواژه‌ها [English]

  • Heavy metals
  • Ion-imprinted polymer
  • Lead
  • Adsorption
  • Colorimetric detection
1.   Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92(3):407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.
2.   Mafu LD, Msagati TA, Mamba BB. Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization, and applications. Environ Sci Pollut Res. 2013;20:790-802. https://doi.org/10.1007/ s11 356-012-1215-3.
3.   Yousefi-Limaee N, Rouhani S. A review on the application of molecularly imprinted polymers in the detection of pollutants: A case study of optical sensors. J stud color world. 2021;10(4):53-68. https://dorl.net/dor/20.1001.1.2251 7278.1399.10.4.5.2 [In Persian].
4.   Hu H. Human health and heavy metals exposure. Life support: The environment and human health. 2002;4:1-12.
5.   El Ouardi Y, Giove A, Laatikainen M, Branger C, Laatikainen K. Benefit of ion imprinting technique in solid-phase extraction of heavy metals, special focus on the last decade. J Enviro Chem Eng. 2021;9(6):106548. https:// doi.org/10.1016/ j.jece.2021.106548.
6.   Płotka-Wasylka J, Szczepańska N, de La Guardia M, Namieśnik J. Modern trends in solid phase extraction: new sorbent media. TrAC, Trends Anal Chem. 2016;77:23-43. https://doi.org/10.1016/j.trac.2015.10.010.
7.    Song C, Zhang Y, Li X, Ouyang G, Cui J, Zhang L, Cui Y. Morphology-maintaining synthesis of copper hydroxy phosphate@ metal–organic framework composite for extraction and determination of trace mercury in rice. Food Chem. 2021;343:128508. https://doi.org/10.1016/ j.food chem.2020.128508.
8.    Ghaedi M, Ahmadi F, Tavakoli Z, Montazerozohori M, Khanmohammadi A, Soylak M. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead. J hazard Mater. 2008;152(3):1248-1255. https://doi.org/10.1016/j.jhazmat.2007.07.108.
9.   Dinu MV, Dinu IA, Lazar MM, Dragan ES. Insights into the mechanism of Cu2+ binding onto chitosan-based cryogel composites: Equilibrium, kinetic and thermodynamic studies. Cell Chem Technol. 2018;52:181-192.
10.  Wu X. Molecular imprinting for anion recognition in aqueous media. Microchim Acta. 2012;176:23-47. https://doi.org/ 10.1007/s00604-011-0683-3.
11.  BelBruno JJ. Molecularly imprinted polymers. Chem rev. 2018;119(1):94-119. https://doi.org/ 10.1021/acs.chemrev. 8b00171.
12.  Zhang N, Zhang N, Xu Y, Li Z, Yan C, Mei K, Hu X. Molecularly imprinted materials for selective biological recognition. Macromol Rapid Commun. 2019;40 (17):1900096. https://doi.org/10.1002/marc. 20190 0096.
13.   Shakerian F, Kim KH, Kwon E, Szulejko JE, Kumar P, Dadfarnia S, Shabani AMH. Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. TrAC, Trends Anal Chem. 2016;83: 55-69. https://doi.org/10.1016/j.trac.2016.08.001.
14.  Mostafa AM, Barton SJ, Wren SP, Barker J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. TrAC, Trends Anal Chem. 2021;144:116431. https://doi.org/ 10.1016/ j.trac.2021.116431.
15.  Haupt K. Molecularly imprinted polymers in analytical chemistry. Analyst. 2001;126(6):747-756. https://doi.org/ 10.1039/B102799A.
16.  Luo X, Liu L, Deng F, Luo S. Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb (II) ions in real environmental water samples. J Mater Chem. A. 2013;1(28):8280-8286. https://doi.org/ 10.1039/C3TA11098B.
17.  Wulff G, Sarhan AJAC. Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angew Chem. 1972;84(8):364-364. https://doi.org/10.1002 /ANGE.19720840838.
18.  Nishide H, Deguchi J, Tsuchida E. Selective adsorption of metal ions on crosslinked poly (vinylpyridine) resin prepared with a metal ion as a template. Chem Lett.1976;5(2):169-174. https://doi.org/10.1246/CL. 1976. 169.
19.  Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted polymeric materials for selective adsorption of heavy metal ions from aqueous solution. Molecules. 2023;28(6):2798. https://doi.org/10.3390/ molecules28062798.
20.  Yan M, editor. Molecularly imprinted materials: science and technology. CRC press; 2004. 
21.  Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. A critical review on the synthesis and application of ion-imprinted polymers for selective preconcentration, speciation, removal and determination of trace and essential metals from different matrices. Crit Rev Anal Chem. 2022;52(2):314-26. https://doi.org/10.1080/10408347 .2020. 1798210.
22.  Branger C, Meouche W, Margaillan A. Recent advances on ion-imprinted polymers. React Funct Polym. 2013;73(6):859-75. https://doi.org/10.1016/j.reactfunct polym.2013.03.021.
23.  Sedghi R, Heidari B, Kazemi S. Novel magnetic ion-imprinted polymer: an efficient polymeric nanocomposite for selective separation and determination of Pb ions in aqueous media. Environ Sci Pollut Res. 2018;25:26297-306. https://doi.org/10.1007/s11356-018-2680-0.
24.  Luo X, Huang W, Shi Q, Xu W, Luan Y, Yang Y, Yang W. Electrochemical sensor based on lead ion-imprinted polymer particles for ultra-trace determination of lead ions in different real samples. RSC Adv. 2017;7(26):16033-16040. https://doi.org/10.1039/C6RA25791G.
25.  Pardeshi S, Singh SK. Precipitation polymerization: A versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Adv. 2016;6(28):23525-23536. https://doi.org/10.1039/C6RA02 784A.
26.  Park J, Dam HA, Kim D. Selective sorption behavior of metal (II) ion-imprinted polymethacrylate microspheres synthesized via precipitation polymerization method. Korean J Chem Eng. 2015;32:967-973. https://doi.org/10.1007 /s11814-014-0374-y.
27.  Rajabi HR, Shamsipur M, Pourmortazavi SM. Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ ion in different water samples. Mater Sci Eng. C. 2013;33(6):3374-3381. https://doi.org/10.1016/j.msec. 2013. 04.022.
28.  Behbahani M, Hassanlou PG, Amini MM, Moazami HR, Abandansari HS, Bagheri A, Zadeh, SH. Selective solid-phase extraction and trace monitoring of lead ions in food and water samples using new lead-imprinted polymer nanoparticles. Food Anal. Methods. 2015;8:558-568. https://doi.org/10.1007/s12161-014-9924-5.
29.  Okubo M, Fujibayashi T, Yamada M, Minami H. Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization. Colloid Polym Sci.2005;283:1041-1045. http://dx.doi.org/10.1007/ s00396-004-1240-y.
30.  Richez AP, Yow HN, Biggs S, Cayre OJ. Dispersion polymerization in non-polar solvent: Evolution toward emerging applications. Prog Polym Sci. 2013;38(6):897-931. http://dx.doi.org/10.1016/j.progpolymsci.2012.12.001.
31.  Zhang M, Helleur R, Zhang Y. Ion-imprinted chitosan gel beads for selective adsorption of Ag+ from aqueous solutions. Carbohydr Polym. 2015;130:206-212. http://dx.doi.org/10.1016/j.carbpol.2015.05.038.
32.  Chern CS. Emulsion polymerization mechanisms and kinetics. Prog Polym Sci. 2006;31(5):443-486. https://doi. org/10.1016/j.progpolymsci.2006.02.001.
33.  Dowding PJ, Vincent B. Suspension polymerisation to form polymer beads. Colloids Surf. A: Physicochem Eng Asp. 2000;161(2):259-269. https://doi.org/10.1016/S0927-7757 (99)00375 -1.
34.  Mishra S, Tripathi A. Selective solid phase extraction and pre-concentration of Cu (II) ions from aqueous solution using Cu (II)-ion imprinted polymeric beads. J Environ Chem Eng. 2020;8(2):103656. https://doi.org/10.1016/ j.jece.2020.103656.
35.  Cai X, Li J, Zhang Z, Yang F, Dong R, Chen L. Novel Pb2+ ion imprinted polymers based on ionic interaction via synergy of dual functional monomers for selective solid-phase extraction of Pb2+ in water samples. ACS Appl Mater. Interfaces. 2014;6(1):305-313. https://doi.org/10.1021/am4 042405.
36.  Kim M, Jiang Y, Kim D. Zn2+-imprinted porous polymer beads: synthesis, structure, and selective adsorption behavior for template ion. React Funct Polym. 2013;73(6):821-827. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2013.03.012.
37.  Tobiasz A, Walas S, Trzewik B, Grzybek P, Zaitz MM, Gawin M, Mrowiec H. Cu (II)-imprinted styrene–divinylbenzene beads as a new sorbent for flow injection-flame atomic absorption determination of copper. Microchem J. 2009;93(1):87-92. https://doi.org/10.1016/ j.microc.2009.05.002.
38.  Jalilian R, Shahmari M, Taheri A, Gholami K. Ultrasonic-assisted micro solid phase extraction of arsenic on a new ion-imprinted polymer synthesized from chitosan-stabilized pickering emulsion in water, rice and vegetable samples. Ultrason Sonochem. 2020;61:104802. https://doi.org/ 10.1016/j.ultsonch.2019.104802.
39.  Zambrzycka-Szelewa E, Leśniewska B, Godlewska-Żyłkiewicz B. Preparation and application of ion-imprinted polymer sorbents in separation process of trace metals. Compr Anal Chem. 2019;86:261-293. https://doi.org/ 10.1016/bs.oac.2019.05.008.
40.  Karrat A, Amine A. Innovative approaches to suppress non-specific adsorption in molecularly imprinted polymers for sensing applications. Biosens Bioelectron. 2024:250:116053.
41.  Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl Chem. 2016;88(3):265-91. https://doi.org/10.1515/pac-2015-0305.
42.  Frery AC, Correia AH, Freitas CD. Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Trans. Geosci Remote Sens. 2007;45(10):3098-109. https://doi.org/10.1109/TGRS.2007.903828.
43.  Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998-1005. https://doi.org/10.1249/MSS.0b013e3181930355.
44.  Bagheri A, Behbahani M, Taghizadeh M, Salarian M, Sadeghi O, Adlnasab L, Jalali K. Synthesis and characterisation of nano structure lead (II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples. Food chem. 2013;138(2-3):2050-2056. https://doi.org/10.1016/j.foodchem.2012.11. 042.
45.  Guo B, Deng F, Zhao Y, Luo X, Luo S, Au C. Magnetic ion-imprinted and–SH functionalized polymer for selective removal of Pb (II) from aqueous samples. Appl surf sci. 2014;292: 438-446. https://doi.org/10.1016/ j.apsusc.2013. 11.156.
46.  Ao X, Guan H. Preparation of Pb (II) ion-imprinted polymers and their application in selective removal from wastewater. Adsorpt Sci Technol. 2018;36(1-2):774-787. https://doi.org/10.1177/026361741772226.
47.  47. Landarani M, Asgharinezhad AA, Ebrahimzadeh H. A magnetic ion-imprinted polymer composed of silica-coated magnetic nanoparticles and polymerized 4-vinyl pyridine and 2, 6-diaminopyridine for selective extraction and determination of lead ions. New J Chem. 2020;44(18):7561-7568. https://doi.org/10.1039/D0NJ01109F.
48.  Dahaghin Z, Kilmartin PA, Mousavi HZ. Novel ion imprinted polymer electrochemical sensor for the selective detection of lead (II). Food chem. 2020;303:125374. https://doi.org/10.1016/j.foodchem.2019.125374.
49.  López FDLM, Khan S, da Silva MA, Neto JAG, Picasso G, Sotomayor MDPT. Systematic study on the synthesis of novel ion-imprinted polymers based on rhodizonate for the highly selective removal of Pb (II). React Funct Polym. 2021;159:104805. https://doi.org/10.1016/j.reactfunctpolym .2020.104805.
50.  López FDLM, Khan S, Picasso G, Sotomayor MDPT. A novel highly sensitive imprinted polymer-based optical sensor for the detection of Pb (II) in water samples. Environ. Nanotechnol Monit Manag. 2021;6:100497. https://doi.org/ 10.1016/j.enmm.2021.100497.
51. Yousefi-Limaee N. Synthesis and application of a novel ion-imprinted polymer as a colorimetric sensor for the detection of lead ions. 22nd Iranian Chemistry Congress (ICC22), Iranian Research Organization for Science and Technology (IROST), 2024;13-15 May:168-169.