حذف رنگزای مالاکیت گرین از پساب با استفاده از کامپوزیت زیستی چارچوب فلز – آلی (ZIF-67) و پلیمر (کربوکسی متیل سلولز)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده شیمی، دانشگاه گیلان، رشت، ایران، کد‌پستی: ۴۱۹۹۶۱۳۷۷۶.

2 دانشیار، دانشکده شیمی، دانشگاه گیلان، رشت، ایران، کد‌پستی: ۴۱۹۹۶۱۳۷۷۶.

3 استاد، گروه محیط زیست، پژوهشگاه رنگ، تهران، ایران، صندوق‌پستی: 654-167654.

4 دانشجوی پسادکتری، گروه محیط زیست، پژوهشگاه رنگ، تهران، ایران، صندوق‌پستی: 654-167654.

10.30509/jscw.2024.167336.1197

چکیده

در این تحقیق، چارچوب ایمیدازولات زئولیتی 67 (ZIF-67) و کامپوزیت زیستی کربوکسی متیل سلولز CMC/ZIF-67 (CMC/ZIF-67) سنتز شد. مواد سنتز‌شده با آنالیز‌های مختلف شناسایی شدند. سپس از کربوکسی متیل سلولز و کامپوزیت زیستی CMC/ZIF-67 برای حذف رنگزای مالاکیت گرین استفاده شد. نتایج نشان داد که قابلیت حذف رنگزا با کامپوزیت زیستی (35/92 درصد) بیشتر از پلیمر کربوکسی متیل سلولز (41/9 درصد) است. با افزایش مقدار جاذب، درصد حذف مالاکیت گرین نیز افزایش ‌‌می‌یابد. با افزایش مقدار جاذب، مکان‌های فعال سطح جاذب در دسترس‌‌‌تر‌ است و درصد حذف رنگزا بیشتر ‌‌می‌شود. درصد حذف رنگزا در مقادیر 1، 2، 3 و 4 میلی‌گرم جاذب کامپوزیت به ترتیب 25، 54، 79 و 35/92 درصد بود. با افزایش غلظت رنگزا، میزان حذف رنگزا کاهش یافت. میزان حذف رنگزا در غلظت‌های 20، 30، 40 و 50 میلی گرم در لیتر با کامپوزیت به ترتیب 35/92، 85، 79 و 71 درصد بود. وجود حلقه‌های ایمیدازول در ساختار ZIF-67 به عنوان لیگاند ‌‌می‌تواند یکی از دلایل اصلی ظرفیت جذب بالای کامپوزیت زیستی باشد. با توجه به پیوند‌های دوگانه در حلقه‌های ایمیدازول، برهم‌کنش‌های انباشتگی Π-Π با حلقه‌های آروماتیک مالاکیت گرین رخ ‌‌می‌دهد. این برهم‌کنش ویژه کامپوزیت زیستی را قادر می‌سازد تا ظرفیت بالای مالاکیت گرین را جذب کند. جذب رنگزا توسط کامپوزیت زیستی CMC/ZIF-67 از ایزوترم لانگمویر و سینتیک شبه مرتبه دوم پیروی ‌‌می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal of Malachite Green dye from wastewater using metal-organic mold biocomposite (ZIF-67) and polymer (carboxymethyl cellulose)

نویسندگان [English]

  • Sahar Ayar 1
  • Hassan Tajik 2
  • Niyaz Mohammad Mahmoodi 3
  • Hadi Fallah Moafi 2
  • Bahareh Rabeie 4
1 Department of Chemistry, Faculty of Science, University of Guilan, P. O. Code: 4199613776, Rasht, Iran.
2 Department of Chemistry, Faculty of Science, University of Guilan, P. O. Code: 4199613776, Rasht, Iran.
3 Department of Environmental Research, Institute for Color Science and Technology, P. O. Box: 167654-654, Tehran, Iran.
4 Department of Environmental Research, Institute for Color Science and Technology, P. O. Box: 167654-654, Tehran, Iran.
چکیده [English]

In this research, the zeolitic imidazolate framework 67 (ZIF-67) and carboxymethyl cellulose (CMC)/ZIF-67 biocomposite (CMC/ZIF-67) were synthesized. Different analyses were used to characterize the synthesized materials. Then, carboxymethyl cellulose and CMC/ZIF-67 biocomposite were used to remove the dye (Malachite Green: MG). The results showed that the dye removal capability of biocomposite (92.35%) is higher than that of carboxymethyl cellulose polymer (9.41%). As the adsorbent dose increases, the removal percentage of MG also increases. As the adsorbent dose increases, the active sites of the adsorbent surface are more accessible, and the dye removal percentage is higher. The dye removal percentage in 1, 2, 3, and 4 mg of composite adsorbent was 25, 54, 79, and 92.35%, respectively. With the increase in dye concentration, the amount of dye removal decreased. The dye removal in 20, 30, 40, and 50 mg/L concentrations with composite was 92.35, 85, 79 and 71%, respectively. The presence of imidazole rings in the structure of ZIF-67 as a ligand can be one of the main reasons for the high adsorption capacity of the biocomposite. Due to the double bonds in the imidazole rings, Π-Π stacking interactions occur with the aromatic rings of MG. This special interaction enables the biocomposite to adsorb the high capacity of MG. The isotherm and kinetics of dye adsorption by CMC/ZIF-67 biocomposite followed the Langmuir isotherm and pseudo-second-order kinetics.
 

کلیدواژه‌ها [English]

  • Synthesis and characterization
  • Biocomposite metal-organic framework (ZIF-67)
  • Polymer (carboxymethyl cellulose)
  • Removal of organic
  • pollutant (dye)
  • Wastewater
1. Hasan Z, Jhung SH. Removal of hazardous organics from water using metal-organic frameworks (mofs): plausible mechanisms for selective adsorptions. J Hazard Mater. 2015;283:329-339. https://doi.org/10.1016/j.jhazmat2014.09. 046.
2.  Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. a critical review on textile wastewater treatments: possible approaches, J Environ Manage. 2016;182:351-366. https://doi.org/10.1016/j.jenvman.2016.07.090.
3. Hunger K. Industrial dyes further of interest . Wiley Online Library, Dec 2002.
4. Yagub MT, Sen TK, Afroze S, Ang HM. Dye And Its Removal from aqueous solution by adsorption: a review, Adv. Colloid Interf Sci. 2014;209:172-184. https://doi.org/ 10.1016/j.cis.2014.04.002
5. Safardastgerdi M, Ardejani FD. Mahmoodi NM, Lignocellulosic biomass functionalized with EDTA dianhydride for removing Cu (II) and dye from wastewater: Batch and fixed-bed column adsorption. Miner Eng. 2023;204:108423. https://doi.org/10.1016/j.mineng.2023. 108423.
6. Dos Santos AB, Cervantes FJ, Van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology, Bioresour Technol 2007;98:2369-2385. https://doi.org/ 10.1016/j.biortech.2006.11.013
7. Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods : A Review, J Environ Chem Eng. 2018;6:4676-4697. https://doi.org/ 10.1016/j.jece.2018.06.060
8. Mahmoodi NM. Photocatalytic degradation of textile dyes using ozonation and magnetic nickel ferrite nanoparticle, Prog Color Colorants Coat. 2016;9:163-171. https://doi. org/10.30509/pccc.2016.75883
9. Saleh IA, Zouari N, Al-Ghouti MA, Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ Technol Innovat. 2020;19:1-12. https://doi.org/10.1016/j.eti.2020.101026.
10. Rabeie B, Mahmoodi NM, Heterogeneous MIL-88A on MIL-88B hybrid: A promising eco-friendly hybrid from green synthesis to dual application (Adsorption and Photocatalysis) in tetracycline and dyes removal, J Colloid Interf Sci. 2024;654:495–522. https://doi.org/ 10.1016/j. jcis.2023.10.060.
11. Zeng Q, Liu Y, Xu Y, Li R, Hong H, Shen L, Lin H. Facile Synthesis of 2D TiO2@Mxene Composite Membrane With Enhanced Separation And Antifouling Performance, J Memb Sci. 2021;640:1-9. https://doi.org/10.1016/j.memsci. 2021.119854.
12. Huang Z, Liu J, Liu Y, Xu Y, Li R, Hong H, Shen L, Lin H, Liao BQ. Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@Mxene nanoparticles to upper layer in phase inversion process. J Memb Sci. 2021;623:1-10. https://doi.org/10.1016/j.memsci.2021.119080.
13. Waheed A, Kazi IW, Manzar MS, Ahmad T, Mansha M, Ullah N, Blaisi NIA. Ultrahigh and efficient removal of Methyl Orange, Eriochrom Black T and Acid Blue 92 by triazine based cross-linked polyamine resin: Synthesis, isotherm and kinetic studies. Colloids Surf A Physicochem Eng Asp. 2020;607:1-12. https://doi.org/10.1016/j. colsurfa.2020.125472.
14. Hu H, Liang W, Zhang Y, Wu S, Yang Q, Wang Y, Zhang M, Liu Q. Multipurpose use of a corncob biomass for the production of polysaccharides and the fabrication of a biosorbents. ACS Sustain Chem Eng. 2018;6:3830-3839. https://doi.org/10.1021/acssuschemeng.7b04179.
15. Mahmoodi NM, Bakhtiari M, Oveisi M, Mahmoodi B, Hayati B. Green synthesis of eco-friendly magnetic metal-organic framework nanocomposites (AlFum -graphene oxide) and pollutants (dye and pharmaceuticals) removal capacity from water, Mater Chem Phys. 2023;302:127720. https://doi.org/10.1016/j.matchemphys.2023.127720.
16. Aris AZ, Hir ZAM, Razak MR, Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCS) from aqueous solution: a review, Appl. Mater. Today, 2020;21:1-26. https://doi.org/10.1016/j.apmt.2020.100796.
17. Dutta S, Gupta B, Srivastava SK, Gupta AK, Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review, Mater Adv. 2021;2:4497-4531. https://doi.org/10.1039/D1MA00354B
18. Arora R, Adsorption of heavy metals-a review, Mater Today Proceed. 2019;18:4745–4750. https://doi.org/10. 1016/j.matpr.2019.07.462.
19. Rudi NN, Muhamad MS, Chuan LT, Alipal J, Omar S, Hamidon N, Hamid NHA, Sunar NM, Ali R, Harun H, Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents, Heliyon. 2020;6:1-9. https://doi.org/10.1016/j.heliyon.2020.e05049.
20. Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH, Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev. 2019;380:330–352. https://doi.org/10.1016/ j.ccr.2018.10.003.
21. Mahmoodi NM, Synthesis of amine-functionalized magnetic ferrite nanoparticle and its dye removal ability, J Environ Eng. 2013;139:1382-1390. https://doi.org/10.1061/ (ASCE)EE.1943-7870.0000763.
22. Bagheri A, Hoseinzadeh H, Mahmoodi NM, Hayati B, Mehraeen E, Post-synthetic functionalization of the metal-organic framework: Clean synthesis, pollutant removal, and antibacterial activity, J Environ Chem Eng. 2021;9:104590. https://doi.org/10.1016/j.jece.2020.104590.
23. Ho YS, Mckay G, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf Environ Prot. 1998;76:183–191. https://doi.org/10.1205/095758298529 326.
24. Sarma GK, Gupta SS, Bhattacharyya KG, Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm and mechanistic study. SN Appl Sci. 2019;1:211. https://doi.org/10.1007/s42452-019-0216-y.
25. Mahmoodi NM, Oveisi M, Bakhtiari M, Hayati B, Shekarchi AA, Bagheri A, Rahimi S, Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework - graphene oxide nanocomposites and pollutant removal from water, J Mole Liq. 2018;282:115–130. https://doi.org/10.1016/j.molliq.2019. 02.139.
26. Soroush S, Mahmoodi NM, Mohammadnezhad B, Karimi A, Activated carbon (AC)- Metal-organic framework (MOF) composite: Synthesis, characterization and dye removal. Korean J Chem Eng. 2022;39:2394–2404. https://doi.org/10.1007/s11814-022-1100-9.
27. Mahmoodi NM, Surface modification of magnetic nanoparticle and dye removal from ternary systems, J Ind Eng Chem. 2020;27:251-259. https://doi.org/10.1016/ j.jiec.2014.12.042.
28. Kuppler RJ, Timmons DJ, Fang QR, Li JR, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou HC, Potential applications of metal-organic frameworks. Coord Chem Rev. 2009;253:3042-3066. https://doi.org/10.1016 /j.ccr.2009.05.019.
29. Corma A, García H, Xamena FLI, Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev. 2010;110:4606- 4655. https://doi.org/10.1021/ cr9003924.
30. Zhou HCJ, Kitagawa S, Metal–organic frameworks (MOFs). Chem Soc Rev. 2014;43:5415-5418. https://doi. org/10.1039/C4CS90059F.
31. Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M, A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev. 2014;43:6141-6172. https:// doi.org/10.1039/C4CS00135D.
32. Yekkezare H, Tajik H, Mahmoodi N.M, Green halogenation of aromatic compounds using environmentally friendly synthesized rod-like metal-organic framework (MIL-88A) catalyst. J Mol Struc. 2023;1285:135454. https://doi.org/ 10.1016/j.molstruc.2023.135454.
33. Czaja AU, Trukhan N, Müller U, Industrial applications of metal–organic frameworks. Chem Soc Rev. 2009;38:1284-1293. https://doi.org/10.1039/B804680H.
34. Jiang J, Recent development of in silico molecular modeling for gas and liquid separations in metal–organic frameworks. Current Opinion Chem Eng. 2012;1:138-144. https://doi.org/10.1016/j.coche.2011.11.002.
35. Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J, Reticular synthesis and the design of new materials. Nature 2003;423:705–714. https://doi.org/10. 1038/nature01650.
36. Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB, A review on contemporary metal–organic framework materials. Inorganica Chimica Acta. 2016;446:61-74. https://doi.org/10.1016/j.ica.2016.02.062.
37. Furukawa H, Cordova KE, O’keeffe M, Yaghi OM, The chemistry and applications of metal-organic frameworks. Sci. 2013;341:1230444. https://doi.org/10.1126/ science. 1230444.
38. Férey G, Mellot⁃Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309:2040-2042. https://doi.org/10.1126/ science.1116275.
39. Jhung SH, Lee JH, Forster PM, Férey G, Cheetham AK, Chang JS, Microwave Synthesis of hybrid inorganic–organic porous materials: phase‐selective and rapid crystallization. Chem A European J. 2006;2:7899-7905. https://doi.org/10.1002/chem.200600270.
40. Braga D, Curzi M, Johansson A, Polito M, Rubini K, Grepioni F, Simple and Quantitative Mechanochemical Preparation of a Porous Crystalline Material Based on a 1D Coordination Network for Uptake of Small Molecules. Angewandte Chemie. 2006;118:148-152. https://doi.org/ 10.1002/anie.200502597.
41. Beldon PJ, Fábián L, Stein RS, Thirumurugan A, Cheetham AK, Friščić T, Rapid room‐temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angewandte Chemie. 2010;122:9834-9837. https://doi. org/10.1002/anie.201005547.
42. Fang QR, Zhu GS, Jin Z, Ji YY, Ye JW, Xue M, Yang H, Wang Y, Qiu SL, Mesoporous metal–organic framework with rare etb topology for hydrogen storage and dye assembly. Angewandte Chemie. 2007;119:6758-6762. https://doi.org/10.1002/anie.200700537.
43. Zhang J, Wu T, Chen S, Feng P, Bu X, Versatile structure‐directing roles of deep‐eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage. Angewandte Chemie. 2009;48:3486-3490. https://doi.org/10.1002/anie.200900134.
44. Lin Z, Slawin AM, Morris RE, Chiral induction in the ionothermal synthesis of a 3-D Coordination Polymer. J Am Chem Soc. 2007;129:4880-4881. https://doi.org/10. 1021/ja070671y.
45. Cheetham AK, Férey G, Loiseau T, Open-Framework Inorganic Materials, Angewandte Chemie. 1999;38:3268–3292. https://doi.org/10.1002/anie.200701404.  
46. Moggach SA, Bennett TD, Cheetham AK, The Effect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa, Angewandte Chemie. 2009;48:7087-7089. https://doi.org/ 10.1002/anie.200902643.
47. Gong Y, Zhou YC, Yang H, Zhang HX, Proserpio DM, Zhang J, A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 Uptake, Chem Commun. 2011;47:5828–5830. https://doi.org/10.1039/ C1CC10829H. 
48. B Chen, Z Yang, Y Zhu, Y Xia, Zeolitic Imidazolate Framework Materials: Recent Progress In Synthesis And Applications, J Mater Chem A. 2014;2:16811-16831. https://doi.org/10.1039/C4TA02984D.
49. Tranchemontagne DJ, Hunt JR, Yaghi OM, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF0, Tetrahedron. 2008;64:8553–8557. https://doi.org/10.1039/ C4TA02984D.
50. Zhang Z, Jin H, Zhu J, Li W, Zhang C, Zhao J, Luo F, Sun Z, Mu S, 3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance, Carbon. 2020;161:502–509. https:// doi.org/10.1016/j.carbon.2020.01.108.
51. Rabeie B, Mahkam M, Mahmoodi NM, Lan CQ, Graphene quantum dot incorporation in the zeolitic imidazolate framework with sodalite (SOD) Topology: Synthesis and improving the adsorption ability in liquid phase, J Environ Chem Eng. 2021;9:106303. https://doi.org/10.1016 /j.jece .2021.106303.
52. Haque E, Lee JE, Jang IT, Hwang YK, Chang JS, Jegal J, Jhung SH, Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates, J Hazard Mater. 2010; 181:535–542. https://doi.org/10.1016/j.jhazmat.2010.05. 047.
53. Hasan Z, Tong M, Jung BK, Ahmed I, Zhong C, Jhung SH, Adsorption of pyridine over amino-functionalized metal-organic frameworks: attraction via hydrogen bonding versus base-base repulsion, J Phys Chem C. 2014;118:21049–21056. https://doi.org/10.1021/jp507074x.
54. Martinez CR, Iverson BL, Rethinking the term ‘‘pi-Stacking", Chem Sci. 2012;3:2191-2202. https://doi.org/ 10.1039/C2SC20045G.
55. Shahmansoori M, Yaghmaei S, Mahmoodi NM. Zeolitic imidazolate framework biocomposite as a visible light-assisted photocatalyst: Synthesis (in-situ and blending), regeneration, and decolorization of Malachite Green. J Ind Eng Chem. 2023;128:472-486. https://doi.org/10.1016/ j.jiec.2023.08.011.
56. Khan NA, Jung BK, Hasan Z, Jhung SH, Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks, J Hazard Mater. 2015;282:194–200. https://doi.org/ 10.1016/j.jhazmat.2014.03.047.
57. Mahmoodi NM, Oveisi M, Taghizadeh A, Taghizadeh M, Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal. Carbohydrate Polym. 2020;227:115364. https://doi.org/10.1016/j.carbpol.2019.115364.
58. Rabeie B, Mahmoodi NM, Hierarchical ternary titanium dioxide decorated with graphene quantum dot/ZIF-8 nanocomposite for the photocatalytic degradation of doxycycline and dye using visible light, J Water Process Eng. 2023;54:103976. https://doi.org/10.1016/j.jwpe.2023.103976.
59. Shahsavari M, Mortazavi M, Tajik S, Sheikhshoaie I, Beitollahi H, Synthesis and characterization of Go/ZIF-67 nanocomposite: investigation of catalytic activity for the determination of Epinine in the presence of Dobutamine, Micromachines 2022;13:88. https://doi.org/10.3390/mi13010088.
60. Hu Y, Song X, Zheng Q, Wang J, Pei J, Zeolitic Imidazolate Framework-67 for shape stabilization and enhanced thermal stability of paraffin-based phase change materials, RSC Adv. 2019;9:9962-9967. https://doi.org/10.1039/C9RA00874H
61. Mondal MIH, Yeasmin MS, Rahman MS, Preparation of food grade carboxymethyl cellulose from corn husk agrowaste, Int J Biol Macromol. 2015;79:144–150. https://doi.org/10.1016/j.ijbiomac.2015.04.061.
62. Crini G, Badot PM, Application of Chitosan, A Natural Aminopolysaccharide, For dye removal from aqueous solutions by adsorption processes using batch studies: A review, Prog Polym Sci. 2008;33:399-447. https://doi. org/10.1016/j.progpolymsci.2007.11.001.
63. Rahimi Aqdam S, Otzen DE, Mahmoodi NM, Morshedi D, Adsorption of azo dyes by a novel bio-nanocomposite based on whey protein nanofibrils and nano-clay: Equilibrium isotherm and kinetic modeling. J Colloid Interf Sci. 2021;602:490-503. https://doi.org/10.1016/j.jcis. 2021. 05.174.
64. Mokhtari-Shourijeh Z, Langari S, Montazerghaem L, Mahmoodi NM, Synthesis of porous aminated PAN/PVDF composite nanofibers by electrospinning: Characterization and Direct Red 23 removal. J Environ Chem Eng. 2020;8:103876. https://doi.org/10.1016/j.jece.2020.103876.
65. Rabeie B, Mahmoodi NM, Mahkam M, Morphological diversity effect of graphene quantum dot/MIL88A(Fe) composites on dye and pharmaceuticals (tetracycline and doxycycline) removal. J Environ Chem Eng. 2022;10: 108321. https://doi.org/10.1016/j.jece.2022.108321.