طراحی مدل مناسب تجاری‌سازی نتایج پژوهش نانومواد مهندسی‌شده

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت تکنولوژی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران، کدپستی: 1596965344.

2 استاد، گروه مدیریت و صنایع، دانشگاه صنعتی مالک اشتر ، تهران، ایران، صندوق‌پستی: 15875-1774.

3 استادیار، گروه مدیریت، علوم و فناوری، دانشگاه صنعتی امیرکبیر، تهران، ایران، صندوق‌پستی: 4413-15875.

10.30509/jscw.2024.167268.1187

چکیده

تجاری‌سازی نانومواد مهندسی‌شده در صنعت رنگ از جمله عوامل مؤثر بر تولید ارزش است و در دو دهه‌ اخیر موجب حجم قابل‌ملاحظه‌ی سرمایه‌گذاری شرکت‌های چندملیتی در حوزه‌ مواد پیشرفته شده است. اما شرکت‌هایی که در حوزه‌ تجاری‌سازی مواد پیشرفته مخصوصا در صنایع رنگ فعالیت می‌کنند به‌دلیل چالش‌های مسیر تجاری‌سازی از آزمایشگاه‌ها به بازار غالباً کسب‌و‌کارهایی پرخطر هستند. همچنین، زمان‌بندی طولانی تجاری‌سازی معمولاً تأثیری منفی بر سرمایه‌گذاری در حوزه‌ موارد پیشرفته دارد. نظر به اهمیت مساله‌ تجاری‌سازی، به‌ویژه تجاری‌سازی نانومواد مهندسی‌شده در صنعت رنگ و کاربردهای صنعتی فزاینده‌ آن، پژوهش حاضر با به‌کارگیری روش کیفی و مصاحبه با اعضای هیات علمی، پژوهشگران و نخبگان حوزه رنگ به بررسی عوامل مؤثر بر تجاری‌سازی نانومواد مهندسی‌شده و چالش‌ها و راهبردهای سرمایه‌گذاری در این حوزه می‌پردازد. یافته‌های پژوهش حاکی از آن است که تجاری‌سازی نانومواد مهندسی‌شده در صنعت رنگ دارای مراحل توسعه‌ طولانی‌مدت و چالش‌های متعدد در حوزه‌ عدم‌قطعیت فناوری و عدم‌قطعیت بازار از جمله موقعیت بالادستی، نوآوری تکمیلی، نوآوری نامشهود و بازارهای متعدد است. همچنین، چهار راهبرد برای غلبه بر چالش‌های تجاری‌سازی نانومواد مهندسی‌شده از مرحله‌ آزمایشگاهی تا ورود به بازار وجود دارد که عبارتند از شتاب‌دهی، اولویت‌بندی بازارهای هدف، موقعیت راهبردی در زنجیره‌ی ارزش، و شراکت و اتحاد راهبردی. در کل، زمان طولانی فرایند تجاری‌سازی، هزینه‌های بالای سرمایه و عدم‌قطعیت از جمله موانع سرمایه‌گذاری در نانومواد مهندسی‌شده و نوآوری‌های این حوزه هستند. با اتخاذ راهبردهای مناسب می‌توان عدم‌قطعیت فناوری و عدم‌قطعیت بازار را کاهش داد و فرایند تجاری‌سازی نانومواد مهندسی‌شده را سرعت بخشید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a Practical Model for Commercializing Research Results of Engineered Nanomaterials

نویسندگان [English]

  • Saeed Moghiseh 1
  • Manochehr Manteghi 2
  • َAmir Naser Akhavan 3
1 Faculty of Management, Central Tehran Branch, Islamic Azad University, P. O. Code: 1596965344, Tehran, Iran.
2 Faculty of Management, Malek Ashtar University, P. O. Box: 1774-15875, Tehran, Iran
3 Faculty of Management, Amirkabir University, P. O. Box: 15875-4413, Tehran, Iran.
چکیده [English]

The commercialization of engineered nanomaterials in the coating industry is one of the key components influencing value production. In the last two decades, it has generated considerable investment by multinational companies in the domain of advanced materials. Due to the challenges of the commercialization process from laboratories to the market, however, organizations that perform in the advanced materials industry, especially the coating industry, are often high-risk companies. Also, a long commercialization process usually hurts investment in advanced materials. The research presented here deals with the challenges and investment strategies in the field by studying the factors impacting the commercialization of engineered nanomaterials in the colorant and paint industry. The findings indicate that the commercialization process of engineered nanomaterials in the the colorant and paint industry has long-term development phases and multiple challenges, such as technological and market uncertainty, including upstream position, complementary innovation, unobservable innovation, and multiple markets. Furthermore, the literature suggests four strategies to overcome the commercialization challenges of engineered nanomaterials from the laboratory phase to the market, including accelerating, prioritization of target markets, strategic position in the value chain, and strategic partnership and alliance. Generally, the long commercialization process, high cost of capital, and uncertainty are among the obstacles to investing in engineered nanomaterials and innovations. Finally, adopting appropriate strategies can reduce technological and market uncertainty and accelerate the commercialization process of engineered nanomaterials.

کلیدواژه‌ها [English]

  • Engineered nanomaterials
  • Commercialization
  • Paint and colorant industry
  • Market uncertainty
  • Technological uncertainty
1.     Maine E. Radical innovation through internal corporate venturing: degussa's commercialization of nanomaterials. Rd Manag. 2008;38(4):359-71. https:// doi.org/10.1111/j.1467-9310.2008.00521.x.
2.   Maine E, Lubik S, Garnsey E. Process-based vs. product-based innovation: value creation by nanotech ventures. Technovation. 2012;32(3-4):179-92. https://doi.org/10.1016/j.technovation. 2011.10.003.
3.   Haessler P, Giones F, Brem A. The who and how of commercializing emerging technologies: A technology-focused review. Technovation. 1;121:102637.
4.   Salehi F, Shapira P, Zolkiewski J. Commercialization networks in emerging technologies: the case of UK nanotechnology small and midsize enterprises. J. Technol Transfer. 2022:1-29. https://doi.org/10.1007/s10961-022-09923-3.
5.   Milmo S. Looking outside-Chemical companies are opening their doors to outside innovation, but does this give larger companies the monopoly on new ideas?. Chem World. 2008;5(11):46.
6.   Shmeleva N, Gamidullaeva L, Tolstykh T, Lazarenko D. Challenges and opportunities for technology transfer networks in the context of open innovation: Russian experience. J. Open Innov Technol Mark Complex. 2021; 7(3): 197. https://doi.org/10.3390/joitmc7030197.
7.   Dahlander L, Gann DM, Wallin MW. How open is innovation? A retrospective and ideas forward. Research Policy. 2021;50(4):104218. https://doi.org/10.1016/j.respol. 2021.104218.
8.   Maine E, Garnsey E. Commercializing generic technology: The case of advanced materials ventures. Research Policy. 2006;35(3):375-93. https://doi.org/10.1016/j.respol. 2005.12. 006.
9.   Linton JD, Walsh ST. From bench to business. Nature Mater. 2003;2(5):287-9.
10. Lubik S, Garnsey E. Early business model evolution in science-based ventures: the case of advanced materials. Long Range Plan. 2016;49(3):393-408. https://doi.org/ 10.1016/j.lrp.2015.03.001.
11.  De Vasconcelos Gomes LA, Facin AL, Salerno MS. Managing uncertainty propagation in innovation ecosystems. Technol. Forecast. Soc. Change. 2021;171:120945. https://doi.org/ 10.1016/j.techfore. 2021. 120945.
12.  de Vasconcelos Gomes LA, Salerno MS, Phaal R, Probert DR. How entrepreneurs manage collective uncertainties in innovation ecosystems. Technol Forecast Soc Change. 2018;128:164-85. https://doi.org/10.1016/ j.techfore.2017. 11.016
13.  The path to improved returns in materials commercialization. Mc Kinsley on chemicals. 2012:1220. Available from: https://www.mckinsey.com/ capabilities/operations/our-insights/the-path-to-improved-returns-in-materials-commercialization. 
14. Ruckstuhl K, Rabello RC, Davenport S. Design and responsible research innovation in the additive manufacturing industry. Des Stud. 2020;71:100966. https://doi.org/10.1016/j.destud.2020.100966.
15. Li X, Yang D, Zhao W. Scholars’ Identity Transition and Its Impact on Spin-Offs’ R&D Input. Sustainability. 2021;13(4):2358. https://doi.org/10.3390/su13042358.
16. Kim JS. Investing in advanced materials: A market-driven methodology. Technovation. 2016;47:23-31. https://doi.org/ 10.1016/j.technovation.2015.11.006
17. Maine E, Thomas VJ, Bliemel M, Murira A, Utterback J. The emergence of the nanobiotechnology industry. Nat Nanotechnol. 2014;9(1):2-5.
18. Maine E. Scientist-entrepreneurs as the catalysts of nanotechnology commercialization. Rev. Nanosci Nanotechnol. 2013;2(5):301-8.
19. Maine E, Probert D, Ashby M. Investing in new materials: a tool for technology managers. Technovation. 2005;25(1):15-23. https://doi.org/10.1016/S0166-4972(03) 00070-1.
20. De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Sci. 2013;339(6119):535-9. https://doi.org/ 10.1126/science.1222453.
21. Thomas VJ, Bliemel M, Shippam C, Maine E. Endowing university spin-offs pre-formation: Entrepreneurial capabilities for scientist-entrepreneurs. Technovation. 2020;96:102153. https://doi.org/10.1016/j.technovation. 2020.102153.
22. Li R, Peng C, Koo B, Zhang G, Yang H. Obtaining sustainable competitive advantage through collaborative dual innovation: empirical analysis based on mature enterprises in eastern China. Technol Anal Strateg Manag. 2021;33(6):685-99. https://doi.org/10.1080/09537325.2020. 1839043.
23. Moultrie J. Understanding and classifying the role of design demonstrators in scientific exploration. Technovation. 2015;43:1-6. https://doi.org/10.1016/j.technovation.2015. 05.002.
24. Slayton R, Spinardi G. Radical innovation in scaling up: Boeing’s Dreamliner and the challenge of socio-technical transitions. Technovation. 2016;47:47-58. https://doi.org/ 10.1016/j.technovation.2015.08.004.
25.  Taleb A, Maine E, Kjeang E. Technical-economic cost modeling as a technology management tool: a case study of membranes for PEM fuel cells. J Manuf Technol Manag. 2014;25(2):279-98. https://doi.org/10.1108/ JMTM-09-2013-0136.
26.  Ahmadi P, Torabi SH, Afsaneh H, Sadegheih Y, Ganjehsarabi H, Ashjaee M. The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles. Int J Hydrogen Energy. 2020;45(5):3595-608. https://doi.org/10.1016/j.ijhydene.2019.01.165.
27.  Clarysse B, Wright M, Bruneel J, Mahajan A. Creating value in ecosystems: Crossing the chasm between knowledge and business ecosystems. Res Policy. 2014;43(7):1164-76. https://doi.org/10.1016/j.respol.2014.04.014.
28. Dearing JW, Singhal A. New directions for diffusion of innovations research: Dissemination, implementation, and positive deviance. Hum Behav Emerg Technol. 2020;2(4):307-13. https://doi.org/10.1002/hbe2.216.
29.  Talebian A, Mishra S. Predicting the adoption of connected autonomous vehicles: A new approach based on the theory of diffusion of innovations. Transp. Res. Part C Emerg. Technol. 2018;95:363-80. https://doi.org/10.1016/j.trc.2018.06.005.
30.  Shaw N, Eschenbrenner B, Brand BM. Towards a Mobile App Diffusion of Innovations model: A multinational study of mobile wallet adoption. J Retail Consum. Serv. 2022;64:102768. https://doi.org/10.1016/j.jretconser.2021. 102768.
31.  Malek K, Maine E, McCarthy IP. A typology of clean technology commercialization accelerators. J Eng Technol Manag. 2014;32:26-39. https://doi.org/10.1016/j.jengtecman. 2013.10.006.
32.  McCarthy IP, Silvestre BS, von Nordenflycht A, Breznitz SM. A typology of university research park strategies: What parks do and why it matters. J Eng Technol. Manag. 2018;47:110-22. https://doi.org/10.1016/j.jengtecman.2018.01.004.
33.  Crișan EL, Salanță II, Beleiu IN, Bordean ON, Bunduchi R. A systematic literature review on accelerators. J Technol Transfer. 2021;46:62-89. https://doi.org/10.1007/s10961-019-09754-9.
34.  Leitão J, Pereira D, Gonçalves Â. Business incubators, accelerators, and performance of technology-based ventures: A systematic literature review. J Open Innov: Technol Mark Complex. 2022;8(1):46. https://doi.org/10.3390/ joitmc 8010046.
35.  Fuchs ER. Cloning DARPA successfully. Issues Sci Technol. 2009;26(1):65-70.
36. Logar N, Anadon LD, Narayanamurti V. Semiconductor research corporation: a case study in cooperative innovation partnerships. Minerva. 2014;52:237-61. https://doi.org/ 10.1007/s11024-014-9253-2.
37.  Dugoua E, Dumas M. Green product innovation in industrial networks: A theoretical model. J Environ Econ Manag. 2021;107:102420. https://doi.org/10.1016/j.jeem.2021.102420.
38.  Haughian A. From the VC desk: striking a balance on focus. Transl Mater Res. 2014;1(1):010202.
39.  Tolfree D, Walsh ST. An introduction to the field of commercializing emerging materials manufacturing technologies in an IoT world. Transl Mater Res. 2018;5(2):024002. 
40.  Ahluwalia S, Mahto RV. Additive manufacturing based innovation, small firms, customer involvement and crowd-funding: from co-creation to co-financing. Transl Mater Res. 2018;5(2):026001. https://doi.org/10.1088/2053-1613/aac43a.
41.  Von Krogh G, Battistini B, Pachidou F, Baschera P. The changing face of corporate venturing in biotechnology. Nat Biotechnol. 2012;30(10):911-5. https://doi.org/10.1038/nbt. 2383.
42.  Uzuegbunam I, Ofem B, Nambisan S. Do corporate investors affect entrepreneurs’ IP portfolio? Entrepreneurial finance and intellectual property in new firms. Entrep Theory Pract. 2019;43(4):673-96. https://doi.org/10.1177/104225871773 8247.
43.  Braun, V. Clarke V. Using thematic analysis in psychology. Qual Res Psychol, 2006;3(2), 77-101.
44. Braun V, Clarke V. Thematic analysis. In Cooper H, Camic PM, Long DL, Panter AT, Rindskopf D, K. J. Sher (Eds.), APA handbook of research methods in psychology. American Psychological Association. 2006. 57–71. 
45.  Braun V, Clarke, V. Conceptual and design thinking for thematic analysis. Qual Psychol. 2022;9(1):3. https://doi.org/ 10.1037/qup0000196.
46.  BraunV, Clarke V. Toward good practice in thematic analysis: Avoiding common problems and be(com)ing a knowing researcher. Int. J. Transgender Health. 2022;24(1):1-6. https://doi.org/10.1080/26895269.2022.21 29597.
47. Clarke V, Braun, V. Successful qualitative research: A practical guide for beginners. Sage Publications. 2013.
48. Clarke V, Braun V. Thematic analysis: A practical guide. Sage Publications, 2021.