1. Singh BJ, Chakraborty A, Sehgal R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. J Environ Manage. 2023;348:119230. https://doi.org/ 10.1016/j.jenvman.2023.119230.
2. Bagheri A, Hoseinzadeh H, Hayati B, Mahmoodi NM, Mehraeen E, Post-synthetic functionalization of the metal-organic framework: Clean synthesis, pollutant removal, and antibacterial activity. J Environ Chem Eng 2021;9:104590. https://doi.org/10.1016/j.jece.2020.104590.
3. Lin L, Yang H, Xu X. Effects of water pollution on human health and disease heterogeneity: a review. Front Environ Sci. 2022;10:880246. https://doi.org/10.3389/fenvs.2022.880246.
4. Mishra RK, Fresh Water availability and Its Global challenge. Br J Multidiscip Adv Stud. 2023;4:1–78. https://doi.org/ 10.37745/bjmas.2022.0208.
5. Salehi M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ Int. 2022;158:106936. https://doi.org/10.1016/j.envint.2021.10 6936.
6. Holkar CR, Jadhav AJ, Pinjari D V., Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: Possible approaches. J Environ Manage. 2016;182:351–66. http://dx.doi.org/10.1016/j.jenvman.2016.07.090
7. Mani S, Chowdhary P, Bharagava RN. Textile wastewater dyes: toxicity profile and treatment approaches. In: Bharagava, R., Chowdhary, P. (eds) Emerging and eco-friendly approaches for waste management. Springer, Singapore. 2019. https://doi.org/10.1007/978-981-10-8669-4_11.
8. Mojiri A, Bashir MJK. Wastewater treatment: current and future techniques. Water (Switzerland). 2022;14:448. https://doi.org/10.3390/w14030448.
9. Wang H, Li X, Zhao X, Li C, Song X, Zhang P, et al. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese J Catal. 2022;43:178–214. http://dx.doi.org/10.1016/ S1872-2067(21)63910-4.
10. Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. J Photochem Photobiol C Photochem Rev. 2012;13(3):169–89. https://doi.org/10.1016/j.jphotochemre v.2012.06.001.
11. Balapure A, Ray Dutta J, Ganesan R. Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. RSC Appl Interfaces. 2024;1:43–69. https://doi.org/ 10.1039/D3LF00126A.
12. Banerjee S, Pillai SC, Falaras P, O’shea KE, Byrne JA, Dionysiou DD. New insights into the mechanism of visible light photocatalysis. J Phys Chem Lett. 2014;5:2543–54. https://doi.org/10.1021/jz501030x.
13. Sun Y, Meng X, Dall’Agnese Y, Dall’Agnese C, Duan S, Gao Y, et al. 2D mxenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 2019;11:79. https://doi.org /10.1007/s40820-019-0309-6.
14. Mishra S, Sundaram B. A review of the photocatalysis process used for wastewater treatment. Mater Today Proc. 2024;102:393-409. https://doi.org/10.1016/j.matpr.2023.07. 147.
15. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53. https://doi.org/ 10.1002/adma.201102306.
16. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2:16098. https://doi.org/10.1038/natrevmats.2016.98
17. Dadashi Firouzjaei M, Karimiziarani M, Moradkhani H, Elliott M, Anasori B. MXenes: the two-dimensional influencers. Mater Today Adv. 2022;13:100202. https://doi.org/10.1016/ j.mtadv.2021.100202.
18. Schultz T, Frey NC, Hantanasirisakul K, Park S, May SJ, Shenoy VB, et al. Surface termination dependent work function and electronic properties of Ti3C2Tx mxene. Chem Mater. 2019;31:6590–7. https://doi.org/10.1021/ acs.Chemmater. 9b00414.
19. Yu H, Jiang H, Zhang S, Feng X, Yin S, Zhao W. Review of Two-Dimensional MXenes (Ti3C2Tx) Materials in Photocatalytic Applications. Processes. 2023;11:1413. https://doi.org/10.3390/pr11051413.
20. Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan LM, Zhang B, Yang J, Gogotsi Y, Billinge SJL, Barsoum MW, Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun. 2014;50:9517-9520. https://doi.org/10.1039/C4 CC03366C.
21. Kewate OJ, Hussain I, Tyagi N, Saxena S, Zhang K, Rajamansingh EG, Chinnappan N, Joshi H, Punniyakoti S, Nb-based mMxenes: structures, properties, synthesis, and application towards supercapacitors. J. Energy Storage 2024; 94:112445. https://doi.org/10.1016/j.est.2023. 109 299.
22. Jakubczak M, Bury D, Abiyyu M, Purbayanto K, Wójcik A, Moszczyńska D, et al. Understanding the mechanism of Nb ‑ MXene bioremediation with green microalgae. Sci Rep. 2022;1–17. https://doi.org/10.1038/s41598-022-18154-3
23. Rasheed PA, Pandey RP, Banat F, Hasan SW. Review recent advances in niobium MXenes: synthesis, properties, and emerging applications. Matter 2022;5: 546-572. https://doi. org/10.1016/j.matt.2021.12.021
24. Ahmed T, Piya AA, Daula Shamim SU. Recent advances in Zr and Hf-based MXenes and their hetero-structure as novel anode materials for Ca-ion batteries: theoretical insights from DFT approach. Nanoscale Adv. 2024;6:3441–9. https://doi.org/ 10.1039/D4NA00140K
25. Elsa G, Hanan A, Walvekar R, Numan A, Zirconium–based MXenes: Synthesis, properties, applications, and prospects. Coord Chem Rev. 2025;526:216355. https://doi.org/ 10.1016/j.ccr.2024.216355
26. Papadopoulou KA, Chroneos A, Christopoulos SRG. Ion incorporation on the Zr2CS2 MXene monolayer towards better-performing rechargeable ion batteries. J Alloys Compd. 2022;922:166240. https://doi.org/10.1016 /j.jallcom.2022 .166240.
27. Syamsai R, Grace AN. Synthesis, properties and performance evaluation of vanadium carbide MXene as supercapacitor electrodes. Ceram Int. 2020;46:5323–30. https://doi.org/ 10.1016/j.ceramint.2019.10.283
28. Vahidmohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries. ACS Nano. 2017;11:11135–44. https:// doi.org/10.1021/acsnano.7b05 350.
29. Sukanya R, Hasan M, Karthik R, Ranjith Kumar D, Kamaraj E, Milton A, et al. In situ decoration of 0D-nickel boride on 2D-vanadium MXene composites: An advanced electrode material for high energy density supercapacitors. Chem Eng J. 2024;497(April): 154928. https://doi.org/10.1016/j. cej.2024. 154928.
30. Satishkumar P, Isloor AM, Rao LN, Farnood R. Fabrication of 2D Vanadium MXene Polyphenylsulfone Ultrafiltration membrane for enhancing the water flux and for effective separation of humic acid and dyes from wastewater. ACS Omega. 2024;9:25766–78. https://doi.org/10.1021/acso mega.3c10078
31. Zeng Q, Wang B, Lai X, Li H, Chen Z, Zeng X, et al. A multifunctional flame-retardant TA-MXene based nanocoating for cotton fabric. Prog Org Coat. 2024;189:108333. https://doi.org/10.1016/j.porgcoat.2024. 108333.
32. Dong L, Chu H, Li Y, Ma X, Pan H, Zhao S, et al. Surface functionalization of Ta4C3 MXene for broadband ultrafast photonics in the near-infrared region. Appl Mater Today. 2022;26:101341. https://doi.org/10.1016/j.apmt.2021.101341.
33. Zhao J, Wen J, Bai L, Xiao J, Zheng R, Shan X, et al. One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton Trans. 2019;48:14433-14439. https://doi.org/ 10.1039/C9DT03260F
34. Syamsai R, Rodriguez JR, Pol VG, Le Q Van. Double transition metal MXene as anodes for Li ‑ ion batteries. Sci Rep. 2021;11:688. https://doi.org/10.1038/s41598-020-79991-8.
35. Li X, Bai Y, Shi X, Su N, Nie G, Zhang R, et al. Applications of MXene (Ti3C2T:X) in photocatalysis: A review. Mater Adv.2021;2(5):1570–94. https://doi.org/10.1039/D0MA0093 8E.
36. Akhtar S, Singh J, Tran TT, Roy S, Lee E, Kim J. Synthesis and optical properties of light-emitting V2N MXene quantum dots. Opt Mater. 2023;138:113660. https://doi.org/10.1016/ j.optmat.2023.113660.
37. Sun P, Liu J, Liu Q, Yu J, Chen R, Zhu J, et al. Stable 3D porous N-MXene/NiCo2S4 network with Ni–O atomic bridging for printed hybrid micro-supercapacitors. Chem Eng J. 2024;493:152731. https://doi.org/10.1016/j.cej.2024.152731.
38. Feng X, Bai T, Xiao B. Prediction of surface termination preference of out-of-plane ordered double-transition metal MXenes (o-MXenes) from first-principles calculations. J Phys Conf Ser. 2022;2321:012012. https://doi.org/10.1088/1742-6596/2321/1/012012.
39. Liu D, Lu Q, Xuan C, Xiao L, Zhao F, Feng X, et al. In situ generation of a Ti3C2Tx (Tx = F, O and OH) MXene decorated CuO nanocomposite with extraordinary catalytic activity for TKX-50 thermal decomposition. Mater Chem Front. 2023;7:2851-2859. https://doi.org/10.1039/D2QM01244H.
40. Verger L, Natu V, Carey M, Barsoum MW. MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. Trends Chem. 2019;1:656–69. https://doi.org/ 10.1016/j.trechm.2019.04.006.
41. Verma R, Sharma A, Dutta V, Chauhan A, Pathak D, Ghotekar S. Recent trends in synthesis of 2D MXene ‑ based materials for sustainable environmental applications. Emergent Mater.2024;7:35–62. https://doi.org/10.1007/s42247-023-00 591-z.
42. Yan A, Tan S, Taimoor H, Awan A, Cheng F, Zhang M, et al. Recent advances in the use of MXenes for photoelectrochemical sensors. Chem Eng J. 2024;482:148774. https://doi.org/10.1016/j.cej.2024.148774.
43. Zhang CJ, Pinilla S, McEvoy N, Cullen CP, Anasori B, Long E, et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem Mater. 2017;29:4848–56. https://doi.org/10.1021/acs.chemmater.7b00745.
44. Li N, Peng J, Ong W jun, Ma T, Zhang P, Jiang J. Perspective MXenes : An Emerging Platform for Wearable Electronics and Looking Beyond. Matter. 2021;4:377–407. https://doi. org/10.1016/j.matt.2020.10.024.
45. Wang Z. A Review on MXene : Synthesis , Properties and Applications on Alkali Metal Ion Batteries. IOP Conf. Ser. Earth Environ. Sci. 2021;714:042030. https://doi. org/10.1088/1755-1315/714/4/042030.
46. Alhabeb M, Maleski K, Mathis TS, Sarycheva A, Hatter CB, Uzun S, et al. Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene). Angew Chemie Int Ed. 2018;57:5444-5448. https://doi.org/10.100 2/anie.201802232.
47. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem Mater.2017;29(18):7633–44. https://doi.org/10.1021/acs. Chemmater.7b02847.
48. Cockreham CB, Zhang X, Li H, Hammond-pereira E, Sun J, Saunders SR, et al. Inhibition of AlF3•3H2O Impurity Formation in Ti3C2T. ACS Appl. Energy Mater. 2019;2:8145–8152. https://doi.org/10.1021/acsaem.9b0161 8.
49. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature. 2015;516:78–81. http://dx.doi.org/10.1038/nature13970.
50. Rahman M, Al Mamun MS. Future prospects of MXenes: synthesis, functionalization, properties, and application in field effect transistors. Nanoscale Adv. 2023;6:367–85. https://doi.org/10.1039/D3NA00874F.
51. Sokol M, Natu V, Kota S, Barsoum MW. On the Chemical Diversity of the MAX Phases. Trends Chem. 2019;1:210–223. https://doi.org/10.1016/j.trechm.2019.02.016.
52. Liu F, Zhou A, Chen J, Jia J, Zhou W, Wang L, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci. 2017;416:781–9. http://dx.doi.org/10.1016/j.apsusc.2017.04.239.
53. Karlsson LH, Birch J, Halim J, Barsoum MW, Persson POÅ. Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Lett. 2015;15:4955–60. https://doi.org/10.1021/acs.nanolett.5b00737.
54. Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh PL, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale. 2016;8:11385–11391. https://doi.org/ 10.1039/C6NR02253G.
55. Peng C, Wei P, Chen X, Zhang Y, Zhu F, Cao Y, et al. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceram Int. 2018;44:18886–93. https://doi.org/ 10.1016/j.ceramint.2018.07.124.
56. Yang S, Zhang P, Wang F, Ricciardulli AG, Lohe MR, Blom PWM, et al. Fluoride‐Free Synthesis of Two‐Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angew Chemie. 2018;130:15717–15721. https://doi.org/10. 1002/ange.201809662.
57. Sun W, Shah SA, Chen Y, Tan Z, Gao H, Habib T, et al. Electrochemical etching of Ti2AlC to Ti2CT:X (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A.2017;5:21663–21668. https://doi.org/10.1039/C7TA055 74A.
58. Li M, Lu J, Luo K, Li Y, Chang K, Chen K, et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J Am Chem Soc. 2019;141(11):4730–4737. https://doi.org/ 10.1021/jacs.9b00574
59. Luo J, Matios E. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2020;2:1057–76. https://doi.org/ 10.1002/inf2.12118
60. Liu L, Orbay M, Luo S, Duluard S, Shao H, Harmel J. Exfoliation and Delamination of Ti3C2Tx MXene Prepared via Molten Salt Etching Route. ACS Nano 2022;16:111–118. https://doi.org/10.1021/acsnano.1c08498
61. Yu H, Wang Y, Jing Y, Ma J, Du C feng, Yan Q. Surface modified mxene-based nanocomposites for electrochemical energy conversion and storage. Small 2019;15:1901503. https://doi.org/10.1002/smll.201901503.
62. Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for li ion batteries ? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 2012;134:16909–16916. https://doi.org/10.1021/ja308463r
63. Lukatskaya MR, Bak S min, Yu X, Yang X qing, Barsoum MW. Probing the mechanism of high capacitance in 2d titanium carbide using in situ x-ray absorption spectroscopy. Adv. Energy Mater. 2015;5:1500589. https://doi.org/ 10.1002/aenm.201500589.
64. Zdrazil L, Zahradnicek R, Mohan R, Sedlacek P, Nejdl L, Schmiedova V, et al. Preparation of graphene quantum dots through liquid phase exfoliation method. J Lumin. 2018;204: 203-208. https://doi.org/10.1016/j.jlumin.2018. 08.017.
65. Xu Y, Wang X, Zhang L, Lv F. Chem Soc Rev Recent progress in two-dimensional inorganic. Chem Soc Rev. 2018;47:586–625. http://dx.doi.org/10.1039/C7CS00500H
66. Yang X, Jia Q, Duan F, Hu B, Wang M, He L, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots : Non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl Surf Sci. 2018;464:78-87. https://doi.org/10.1016/ j.apsusc.2018.09.069.
67. Shao B, Liu Z, Zeng G, Wang H, Liang Q, He Q, et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem. A. 2020;8:7508-7535. https://doi.org/10.1039/D0TA01552K.
68. Zhang T, Jiang X, Li G, Yao Q, Yang J. A Red-Phosphorous-Assisted Ball-Milling Synthesis of Few- Layered Ti3C2Tx (MXene) Nanodot Composite. ChemNanoMat 2018;4:56–60. https://doi.org/10.1002/ cnma.201700232.
69. Yu X, Cai X, Cui H, Lee SW, Yu XF, Liu B, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 2017;9:17859-17864. https://doi.org/ 10.1039/ C7NR05997C
70. Rahman UU, Humayun M, Ghani U, Usman M, Ullah H, Khan A, El-Metwaly NM, Khan A. MXenes as emerging materials: synthesis, properties, and applications. Molecules. 2022; 27(15):4909. https://doi. org/10.3390/molecules27154909.
71. Zhou C, Tan K.B, Han W, Wang L, Lu M. A review of mxene-derived quantum dots: synthesis, characterization, properties, and applications. Particuology. 2024;19,50-71. https://doi.org/ 10.1016/j.partic.2023.12.016.
72. Xu Q, Cai W, Li W, Sreenivasan T, He Z, Ong W jun, et al. Two-dimensional quantum dots : fundamentals, photoluminescence mechanism and their energy and environmental applications. Mater Today Energy. 2018;10:222–40. https://doi.org/10.1016/j.mtener.2018. 09. 005.
73. Cheng H, Ding L xin, Chen G feng, Zhang L, Xue J, Wang H. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Adv Mat. 2018;30:1803694. https://doi.org/ 10.1002/adma. 201803694
74. Wang Y, Li C, Han X, Liu D, Zhao H, Li Z, et al. Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl Nano Mater. 2018;1:5366–5376. https://doi.org/10.1021/acsanm.8b01 479.
75. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, et al. Scalable Manufacturing of Free-Standing , Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Adv. Mat. 2020;32:2001093. https://doi.org/10.1002 /adma.202001093
76. Wang R, Young Jang W, Zhang W, Venkata Reddy C, Kakarla RR, Li C, et al. Emerging two-dimensional (2D) MXene-based nanostructured materials: Synthesis strategies, properties, and applications as efficient pseudo-supercapacitors. Chem Eng J. 2023;472: 144913. https://doi.org/10.1016/j.cej.2023.144913.
77. Rabeie B, Mahkam M, Mahmoodi NM, Lan CQ. Graphene quantum dot incorporation in the zeolitic imidazolate framework with sodalite (SOD) topology: Synthesis and improving the adsorption ability in liquid phase. J Environ Chem Eng. 2021;9(6):106303. https://doi.org/10.1016 /j.jece.2021.106303
78. Rabeie B, Mahmoodi NM, Mahkam M. Morphological diversity effect of graphene quantum dot / MIL88A (Fe) composites on dye and pharmaceuticals (tetracycline and doxycycline) removal. J Environ Chem Eng. 2022;10:108321. https://doi.org/10.1016/j.jece.2022.108321.
79. Russo V, Hmoudah M, Broccoli F, Iesce MR. Applications of metal organic frameworks in wastewater treatment : A review on adsorption and photodegradation. Front Chem Eng. 2020; 2:581487. https://doi.org/10.3389/fceng.2020.581487.
80. Kandisa RV, Saibaba KV N. Dye Removal by Adsorption: A Review. Int J Biodegrad Bioremediat. 2016;7:6. https://doi.org/10.4172/2155-6199.1000371.
81. Huang Z, Zeng Q, Liu Y, Xu Y, Li R, Hong H, et al. Facile synthesis of 2D TiO2@MXene composite membrane with enhanced separation and antifouling performance. J Memb Sci. 2021;640:119854. https://doi.org/10.1016/j.memsci.2021.1198 54.
82. Kadhom M, Deng B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl Mater Today. 2018;11:219–30. https://doi.org/10.1016/j.apmt.2018.02.008
83. Wang T, Li M, Xu H. et al. MXene sediment-based poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned channels for highly efficient solar steam generation. Nano-Micro Lett. 2024;16:220. https://doi.org/10.1007/s40820 -024-01433-1.
84. Hosseinabadi-Farahani Z, Hosseini-Monfared H, Mahmoodi NM, Graphene oxide nanosheet: preparation and dye removal from binary system colored wastewater. Desalin Water Treat. 2015;56: 2382-2394.
85. Rabeie B, Mahmoodi NM, Dargahi A, Hayati B, Rezakhani Moghaddam H. Magnetic COF/MOF hybrid: An efficient Z-scheme photocatalyst for the visible light-assisted degradation of tetracycline and malachite green. J Mol Liq. 2025;421:126869. https://doi.org/10.1016/j.molliq.2025.126 869.
86. Rabeie B, Mahmoodi NM, Hayati B, Dargahi A, Rezakhani Moghaddam H. Chitosan adorned with ZIF-67 on ZIF-8 biocomposite: A potential LED visible light-assisted photocatalyst for wastewater decontamination. Int J Biol Macromol. 2024;282:137405. https://doi.org/10.1016/j. ijbiomac 2024.137405
87. Rabeie B, Mahmoodi NM. Green and environmentally friendly architecture of starch-based ternary magnetic biocomposite (Starch/MIL100/CoFe2O4): Synthesis and photocatalytic degradation of tetracycline and dye. Int J Biol Macromol. 2024;274:133318. https://doi.org/10.1016/j.ijbiomac.2024. 133 318.
88. Hoseinzadeh H, Bakhtiari M, Seifpanahi-Shabani K, Oveisi M, Hayati B, Rabeie B, et al. Synthesis of the metal-organic framework – Copper oxide nanocomposite and LED visible light organic contaminants (dye and pharmaceutical) destruction ability in the water. Mater Sci Eng B. 2021;274:115495. https://doi.org/10.1016/j.mseb.2021.11549 5.
89. Rabeie B, Mahmoodi NM. Hierarchical ternary titanium dioxide decorated with graphene quantum dot/ZIF-8 nanocomposite for the photocatalytic degradation of doxycycline and dye using visible light. J Water Process Eng. 2023;54:103976. https://doi.org/10.1016/j.jwpe.2023.103976.
90. Rabeie B, Mahmoodi NM. Heterogeneous MIL-88A on MIL-88B hybrid: A promising eco-friendly hybrid from green synthesis to dual application (Adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci. 2024;654:495–522. https://doi.org/10.1016/j.jcis.2023.10.060.
91. Li Y, Xia Z, Yang Q, Wang L, Xing Y. Review on g-C3N4-based S-scheme heterojunction photocatalysts. J Mater Sci Technol. 2022;125:128–44. https://doi.org/10.1016/j.jmst. 2022.02.035
92. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction Photocatalysts. Adv Mater. 2017;29:1601694. https://doi.org/10.1002/adma.201601694.
93. Yang H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater Res Bull. 2021;142:111406. https://doi.org/10.1016/j.materr esbull.2021.111406.
94. Meng A, Cheng B, Tan H, Fan J, Su C, Yu J. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl Catal B Environ. 2021;289:120039. https://doi.org/10.1016/j.apcatb .2021.120039.
95. Liu S, Chen L, Liu T, Cai S, Zou X, Jiang J, et al. Rich S vacant g-C3N4@CuIn5S8 hollow heterojunction for highly efficient selective photocatalytic CO2 reduction. Chem Eng J. 2021;424:130325. https://doi.org/10.1016/j.cej.2021.130325.
96. Salazar-Marín D, Oza G, Real JAD, Cervantes-Uribe A, Pérez-Vidal H, Kesarla MK, et al. Distinguishing between type II and S-scheme heterojunction materials: A comprehensive review. Appl Surf Sci Adv. 2024;19:100536. https://doi.org/ 10.1016/j.apsadv.2023.100536.
97. Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol , 2-chlorophenol and pentachlorophenol : chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol. A: Chem.1995;85:247-255. https://doi.org/10.1016/ 1010-6030(94)03906-B
98. Serpone N, Borgarello E, Gratzel M. Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer. J Chem Soc Chem Commun. 1984;6:342-344. https://doi.org/10.1039/C39840000342.
99. Xue J, Bao J. Interfacial charge transfer of heterojunction photocatalysts : Characterization and calculation. Surf. Interfaces. 2021;25:101265. https://doi.org/10.1016/j.surfin .2021.101265.
100. Wang Z, Lin Z, Shen S, Zhong W, Cao S. Advances in designing heterojunction photocatalytic materials. Chinese J Catal 2021;42:710–30. http://dx.doi.org/10.1016/S1872-2067(20)63698-1.
101. Yuan Y, Guo R tang, Hong L fei, Ji X yin, Lin Z dong, Li Z sheng, et al. A review of metal oxide-based Z-scheme heterojunction photocatalysts : actualities and developments. Mater Today Energy 2021;21:100829. https://doi.org/ 10.1016/j.mtener.2021.100829.
102. Liao G, Li C, Liu S yong, Fang B. Emerging frontiers of Z-scheme photocatalytic systems. Trends Chem 2021;4:111–27. https://doi.org/10.1016/j.trechm.2021.11.005.
103. Ge M, Li Z. Recent progress in Ag3PO4 ‐ based all ‐ solid ‐ state Z ‐ scheme photocatalytic systems. Chinese J Catal. 2017;38:1794–803. http://dx.doi.org/10.1016/S1872-2067(17) 62905-X.
104. Wu F, Li X, Liu W, Zhang S. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl Surf Sci. 2017;405:60-70. http://dx.doi.org/10.1016/j.apsusc. 2017.01.285.
105. Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem. 2020;6:1543-1559. https://doi.org/10.1016/j.chempr.2020.06.010.
106. Low J, Jiang C, Cheng B, Wageh S, Al-ghamdi AA. A review of direct z-scheme photocatalysts. Small 2017;1:1700080. https://doi.org/10.1002/smtd.201700080.
107. Li X, Garlisi C, Guan Q, Anwer S, Al-ali K, Palmisano G, et al. A review of material aspects in developing direct Z-scheme photocatalysts. Mater. Today 2021;47:75-107 https://doi. org/10.1016/j.mattod.2021.02.017.
108. Shao B, Liu Z, Zeng G, Liu Y, Liang Q, He Q. Synthesis of 2D/2D CoAl-LDHs/Ti3C2Tx Schottky-junction with enhanced interfacial charge transfer and visible-light photocatalytic performance. Appl Catal B Environ. 2021;286:119867. https://doi.org/10.1016/j.apcatb.2020.119867.
109. Zhang S, Cai M, Wu J, Wang Z, Lu X, Li K, et al. photocatalytic degradation of TiO2 via incorporating Ti3C2 MXene for methylene blue removal from water. Catal. Commun. 2023;174:106594. https://doi.org/10.1016/j.catcom. 2022.106594.
110. Ding X, Li C, Wang L, Feng L, Han D, Wang W. Fabrication of hierarchical g-C3N4/ MXene-AgNPs nanocomposites with enhanced photocatalytic performances. Mater Lett. 2019;247:174–7. https://doi.org/10.1016/j.matlet.2019.02.125
111. Diao Y, Yan M, Li X, Zhou C, Peng B, Chen H. In-situ grown of g-C3N4/Ti3C2/TiO2 nanotube arrays on Ti meshes for e ffi cient degradation of organic pollutants under visible light irradiation. Colloids Surf A: Physicochem Eng Asp. 2020;594: 124511. https://doi.org/10.1016/j.colsurfa.2020.124511
112. Quang V, Khoa T, Nguyen T quang, Khan A. Photocatalytic degradation of methyl orange dye by Ti3C2-TiO2 heterojunction under solar light. Chemosphere. 2021;276:130154. https://doi.org/10.1016/j.chemosphere.2021. 130154.
113. Akbari M, Rasouli J, Rasouli K, Ghaedi S, Mohammadi M, Rajabi H, et al. MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater. Sci Rep. 2024;14:31498. https://doi.org/10.1038/s41598-024-83333-3.
114. Othman Z, Sinopoli A, Mackey HR, Mahmoud KA. Efficient Photocatalytic Degradation of organic dyes by AgNPs/TiO2/Ti3C2Tx MXene Composites under UV and Solar Light. ACS Omega. 2021;6:33325-33338. https://doi.org/10.1021/acsomega.1c03189
115. Diao Y, Yan M, Li X, Zhou C, Peng B, Chen H, et al. In-situ grown of g-C3N4/Ti3C2/TiO2 nanotube arrays on Ti meshes for efficient degradation of organic pollutants under visible light irradiation. Colloids Surfaces A Physicochem Eng Asp. 2020;594:1–11. https://doi.org/10.1016/j.colsurfa.2020.12451 1.
116. Li M, Lai C, Yi H, Huang D, Qin L, Liu X, et al. Multiple charge-carrier transfer channels of Z-scheme bismuth tungstate-based photocatalyst for tetracycline degradation: Transformation pathways and mechanism. J Colloid Interface Sci. 2019;555:770–82. https://doi.org/10.1016/j.jcis.2019 .08.035.
117. Long R, Yu Z, Tan Q, Feng X, Zhu X, Li X, et al. Ti3C2 MXene/NH2-MIL-88B(Fe): Research on the adsorption kinetics and photocatalytic performance of an efficient integrated photocatalytic adsorbent. Appl Surf Sci. 2021;570:151244. https://doi.org/10.1016/j.apsusc.2021.151 244.
118. Jiao S, Liu L. Friction-induced enhancements for photocatalytic degradation of MoS2@Ti3C2 nanohybrid. Ind Eng Chem Res. 2019;58(39):18141–8. https://doi.org/10.1021/acs.iecr.9b03680
119. Zhang H, Li M, Zhu C, Tang Q, Kang P, Cao J. Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram Int. 2020;46:81–8. https://doi.org/10.1016/j.ceramint.2019.08.236.
120. Cai T, Wang L, Liu Y, Zhang S, Dong W, Chen H, et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl Catal B Environ. 2018;239:545–54. https://doi.org/10.1016/j.apcatb.2018.08. 053.
121. Li K, Lu X, Zhang Y, Liu K, Huang Y, Liu H. Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environ Res. 2020;185:109409. https://doi.org/10.1016/j.envres.2020. 1094 09.
122. Deng H, Li ZJ, Wang L, Yuan LY, Lan JH, Chang ZY, et al. Nanolayered Ti3C2 and SrTiO3 composites for photocatalytic reduction and removal of uranium (VI). ACS Appl Nano Mater. 2019;2:2283–94. https://doi.org/10.1021/acsanm.9b00205.
123. Peng C, Wang H, Yu H, Peng F. (111) TiO2-x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater Res Bull. 2017;89:16–25. https://doi.org/10.1016/j.materresbull.2016.12.049.
124. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F. Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Appl Mater Interfaces. 2016;8(9):6051–60. https://doi.org/10.1021/acsami .5b11973.
125. Liu Q, Tan X, Wang S, Ma F, Znad H, Shen Z, et al. MXene as a non-metal charge mediator in 2D layered CdS@Ti3C2@TiO2 composites with superior Z-scheme visible light-driven photocatalytic activity. Environ Sci Nano. 2019;6(10):3158–69. https://doi.org/10.1039/C9EN00567F.
126. Liu N, Lu N, Yu HT, Chen S, Quan X. Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants. Chemosphere. 2020;246: 125760. https://doi.org/10.1016/j.chemosphere.2019.125760.
127. Fang H, Pan Y, Yin M, Pan C. Enhanced photocatalytic activity and mechanism of Ti3C2−OH/Bi2WO6:Yb3+, Tm3+ towards degradation of RhB under visible and near infrared light irradiation. Mater Res Bull. 2020;121:110618. https://doi.org/10.1016/j.materresbull.2019.110618.
128. Li S, Zhang T, Zheng H, Niu J, Zhang W, Ma J, et al. Efficient photo-Fenton degradation of water pollutants via peracetic acid activation over sulfur vacancies-rich metal sulfides/MXenes. Appl Catal B Environ. 2025;366:125000. https://doi.org/ 10.1016/j.apcatb.2024.125000.
129. Mahmoodi NM, Mokhtari-Shourijeh Z, Preparation of aminated nanoporous nanofiber by solvent casting/porogen leaching technique and dye adsorption modeling. J Taiwan Inst Chem Eng. 2016;65:378-389. https://doi.org/10.1016 /j.jtice.2016.05.042.
130. Foroughifar N, Mobinikhaledi A, Rabeie B, Jalili L, DABCO as a mild and efficient catalyst for the synthesis of tetrahydropyrimidines. Rev Roum Chim 2013;58:491-495.
131. Mahmoodi NM, Ghadirli MM, Hayati B, Mahmoodi B, Rabeie B, Synthesis of ZIF-8 composite (g-C3N4@ ZIF-8/Ag3PO4) as a catalyst for the malachite green and tetracycline degradation. Inorg Chem Commun. 2025;177:114345. https://doi.org/10.1016/j.inoche.2025.114345.
132. Ayar S, Tajik H, Mahmoodi NM, Fallah Moafi H, Rabeie B. Removal of malachite green dye from wastewater using metal-organic mold biocomposite (ZIF-67) and polymer (carboxymethyl cellulose). J Stud Color World. 2024;14(4):285-301. https://doi.org/10.30509/jscw.2024.167336.1197 [In Persian].
133. Mazarji M, Mahmoodi NM, Bidhendi GN, Li A, Li M, James A, Mahmoodi B, Pan J, Synthesis, Characterization, and Enhanced Photocatalytic Dye Degradation: Optimizing Graphene-Based ZnO-CdSe Nanocomposites via Response Surface Methodology. J. Alloys Compd. 2025;1010:177999. https://doi.org/10.1016/j.jallcom.2024.177999
134. Mahmoodi NM, Mokhtari-Shourijeh Z, Modified poly (vinyl alcohol)-triethylenetetramine nanofiber by glutaraldehyde: preparation and dye removal ability from wastewater. Desalin Water Treat. 2016;57:20076-20083. https://doi.org/10. 1080/19443994.2015.1109562
135. Mahmoodi NM, Hosseinabadi‐Farahani Z, Chamani H, Dye adsorption from single and binary systems using NiO‐MnO2 nanocomposite and artificial neural network modeling. Environ Prog Sustain. 2017;36:111-119. https://doi.org/10.1002 /ep.12452
136. Mahmoodi NM, Maghsoodi A, Kinetics and isotherm of cationic dye removal from multicomponent system using the synthesized silica nanoparticle. Desalin Water Treat. 2015;54:562-571. https://doi.org/10.1080/19443994.2014. 880158
137. Oshani F, Kargari A, Norouzbeigi R, Mahmoodi NM, Role of Fabrication Parameters on Microstructure and Permeability of Geopolymer Microfilters. Chem Eng Res Des. 2024;210;190-201. https://doi.org/10.1016/j.cherd.2024.08.009
138. Dousti S, Mahmoodi B, Bijari M, Shahbazi A,Investigating the Effect of Various Precursors in the Synthesis and Improvement of the Photocatalytic Performance of Graphite Carbon Nitride in the Degradation of Rhodamine B Dye Under Visible Light. J Color Sci Tech. 2024;18(2):135-150. https://doi.org/10.30509/JCST.2024.167291.1224. [In Persian].
139. Mahmoodi NM, Bakhtiari M, Oveisi M, Mahmoodi B, Hayati B, Green synthesis of eco-friendly magnetic metal-organic framework nanocomposites (AlFum-graphene oxide) and pollutants (dye and pharmaceuticals) removal capacity from water. Mater Chem Phys. 2023;302:127720.https://doi.org/ 10.1016/j.matchemphys.2023.127720.
140. Ahmadi S, Mahmoodi B, Kazemini M, Mahmoodi NM, Photocatalytic degradation of dye (Reactive Red 198) and pharmaceutical (tetracycline) using MIL-53 (Fe) and MIL-100 (Fe): catalyst synthesis and pollutant degradation. Pigm Resin Technol. 2023;52:357-368. https://doi.org/10.1108/PRT-05-2022-0067.
141. Shokrgozar A, Seifpanahi-Shabani K, Mahmoodi B, Mahmoodi NM, Khorasheh F, Baghalha M, Synthesis of Ni-Co-CNT nanocomposite and evaluation of its photocatalytic dye (Reactive Red 120) degradation ability using response surface methodology. Desalin Water Treat 2021;216:389-400. https://doi.org/10.5004/dwt.2021.26804.