مطالعات فوتوکاتالیزی و سینتیکی تصفیه پساب‌های رنگی و کشاورزی با استفاده از بیسموت اکسی‌برومید بهبودیافته با مقدار بسیار کم از نانوذرات چارچوب فلز-آلی (زیرکونیم)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران کد‌پستی: 6617715175.

2 دانشیار، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران، کد‌پستی: 6617715175.

10.30509/jscw.2025.167497.1227

چکیده

در این تحقیق، نانوکامپوزیت بیسموت اکسی‌برومید حاوی 5/2 درصد وزنی از نانوذرات چارچوب فلز-آلی (زیرکونیم)، جهت تجزیه علف‌کش بنتازون و رنگزای متیل اورانژ به روش شیمیایی مرطوب و تحت اختلاط شدید سنتز و خصوصیات آن با آزمون‌هایی چون XRD، FESEM/EDX، FTIR، UV-DRS و PL شناسایی شد. نتایج نشان داد که با افزودن مقدار کمی از چارچوب فلز- آلی، نانوکامپوزیت مذکور فعالیت فوتوکاتالیزی بهتری را در مقایسه با نیمه‌رسانای خالص بیسموت اکسی‌برومید از خود نشان می‌دهد. نانوکامپوزیت سنتز‌‌شده موفق شد طی 120 دقیقه، 9/34 درصد از آلاینده بنتازون را تحت تابش نور فرابنفش و 25 درصد از آن را تحت نور مرئی تجزیه کند. همچنین، این نانوکامپوزیت توانست 4/97 و 3/91 درصد از رنگزای متیل اورانژ را به ترتیب تحت تابش نور فرابنفش و نور مرئی حذف نماید. مطالعات سینتیکی بیانگر تبعیت نتایج حذف آلاینده‌ها از مدل مرتبه اول بود. بهبود در کارایی تجزیه بنتازون و رنگزای متیل اورانژ به بیشتر شدن ظرفیت جذب آلاینده و کاهش نرخ بازترکیب جفت‌های الکترون-حفره نسبت داده می‌شود که نقش حیاتی در بهبود عملکرد فوتوکاتالیزی دارد. به‌علاوه، تعامل بین چارچوب فلز- آلی و نیمه‌رسانای بیسموت اکسی‌‌برومید از تجمع و انباشت نانوصفحات بیسموتی جلوگیری می‌کند که باعث تجزیه مؤثرتر آلاینده‌ها می‌شود. این یافته‌ها نشان می‌دهد که افزودن مقدار کمی از چارچوب فلز-آلی (زیرکونیم) نه‌‌تنها تأثیری بر هزینه تمام شده فوتوکاتالیست ندارد، بلکه می‌تواند ظرفیت جذب و کارایی فوتوکاتالیزی بیسموت اکسی‌‌برومید را بطور چشمگیری بهبود بخشد و آن را به یک گزینه نویدبخش برای کاربردهای پیشرفته تصفیه پساب تبدیل کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Photocatalytic and Kinetics Studies of Colored and Agriculture Wastewater Treatment Using Bismuth OxyBromide Reinforced with a Trace Amount of Metal-Organic Framework (Zr) Nanoparticles

نویسندگان [English]

  • Bahman Rezaei 1
  • Farhad Rahmani 2
  • Mehrdad Khamforoush 2
1 Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P. O. Box: 66177-15175, Sanandaj, Iran.
2 Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P. O. Box: 66177-15175, Sanandaj, Iran.
چکیده [English]

In this study, a bismuth oxybromide nanocomposite containing 2.5 wt% metal-organic framework (Zr) nanoparticles was synthesized using a wet chemical method under vigorous stirring for the degradation of bentazon and methyl orange and characterized by XRD, FESEM/EDX, FTIR, UV-DRS and PL analyses. By adding a small amount of metal-organic framework (MOF), the nanocomposite exhibited better photocatalytic activity compared to pure bismuth oxybromide. The synthesized nanocomposite successfully degraded 34.9% of bentazone under UV irradiation and 25% under visible light within 120 min. Additionally, it achieved 97.4% and 91.3% degradation of methyl orange under UV and visible light, respectively. Kinetic studies indicated that the pollutant removal results followed the first-order model. The improvement in the degradation efficiency is attributed to the increased adsorption capacity and reduced recombination rate, which play a crucial role in enhancing photocatalytic performance. Furthermore, the interaction between MOF and bismuth oxybromide semiconductor prevents the accumulation of bismuth-based nanosheets, leading to more effective pollutant degradation. These findings suggest that adding a small amount of metal-organic framework (Zr) not only has no impact on the photocatalyst cost but can also significantly improve the adsorption capacity and photocatalytic efficiency of bismuth oxybromide, making it a promising option for advanced wastewater treatment applications.

کلیدواژه‌ها [English]

  • Photocatalytic treatment
  • Metal-organic frameworks
  • Bismuth oxybromide
  • Methyl orange
  • Bentazon
1. Kesari KK, Soni R, Jamal QMS, Tripathi P, Lal JA, Jha NK, et al. Wastewater treatment and reuse: a review of its applications and health implications. Water Air Soil Pollut. 2021;232(5):1-28.https://doi.org/10.1007/s11270-021-051 54-8.
2. Nishat A, Yusuf M, Qadir A, Ezaier Y, Vambol V, Khan MI, et al. Wastewater treatment: a short assessment on available techniques. Alex Eng J. 2023;76:505-16. https://doi.org/ 10.1016/j.aej.2023.06.054.
3. Zandi A, Akbari Seneh R, Rahmani Chiyaneh F. The Impact of clinoptilolite natural zeolite on the photocatalytic properties and performance of BiOI semiconductor in the photodegradation of dye wastewater. J Pet Res. 2022; 32(1401-3):48-65. https://doi.org/10.22078/pr.2022.4669. 3099.
4. Silva JA. Wastewater treatment and reuse for sustainable water resources management: a systematic literature review. Sustainability. 2023;15(14):10940. https://doi.org/ 10.3390/su151410940.
5. Khan S, Noor T, Iqbal N, Yaqoob L. Photocatalytic dye degradation from textile wastewater: A Review. ACS Omega. 2024;9(20):21751-67. https://doi.org/10.1021/acso mega.4c00887.
6. Abramović B, Despotović V, Šojić D, Finčur N. Mechanism of clomazone photocatalytic degradation: hydroxyl radical, electron and hole scavengers. React. Kinet. Mech. Catal. 2015;115:67-79. http://dx.doi.org/10.1007/s11144-014-0814-z.
7. Barsan N, Zaharia A, Chitimus D, Mosnegutu E, Florin N, Rusu D, et al., Filtration theory and techniques. A short review on the filtration process. 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE); 2020: IEEE.
8. El Barkaoui S, Mandi L, Fichera M, Ryah H, Bacaoui A, Del Bubba M, Ouazzani N. Optimizing biochar-based column filtration systems for enhanced pollutant removal in wastewater treatment: A preliminary study. Chemosphere. 2025;372:144067. https://doi.org/10.1016/j.chemosphere. 2025.144067.
9. Chang I-S, Kim S-N. Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance. Process Biochem. 2005;40(3-4):1307-14. http:// dx.doi.org/10.1016/j.procbio.2004.06.019.
10. Ranjbaran N, Akbari A, Yegani R, Roghani-Mamaqani H, Chapalaghi M. Graphene oxide decorated copper nanoparticles embedded polysulfone nanocomposite membrane: anti-bacterial, organo-bio fouling evaluation in pharmaceutical wastewater treatment via MBR. J Ind Eng Chem. 2025;142:293-308. https://doi.org/10.1016/j.jiec. 2024.07.036.
11. Lettinga G. Sustainable integrated biological wastewater treatment. Water Sci Technol. 1996;33(3):85-98. https:// doi.org/10.1016/0273-1223(96)00303-4.
12. Bao Y, Yang B, Yang R, Wang J, Geng A, Zhang C, Sun Z. Regulation of microbial activity based on quorum sensing: Implications for biological wastewater treatment. Int Biodeterior Biodegrad. 2025;199:106029. https://doi.org/ 10.1016/j.ibiod.2025.106029.
13. Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res Int. 2021;28(8):9050-66. https://doi.org/10.1007/s11356-021-12395-x.
14. Kariminejad F, Ghadimi SB, Rahmani F, Haghighi M, Sene RA, et al. Kinetic and isotherm study of Cr (VI) biosorption from industrial effluents by biomass of dried sludge. Desalin Water Treat. 2021;209:91-104. https://doi.org/10.5004 /dwt.2021.26477.
15. Lazar MA, Varghese S, Nair SS. Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts. 2012;2(4):601-572. https://doi.org/10.3390/catal2040572.
16. Herrmann J-M. Water treatment by heterogeneous photocatalysis. Environmental catalysis: World Scientific; 1999. 171-94.
17. Amini A, Rahmani F, Kkamforoush M, Sene RA. Bentonite nanoparticles-incorporated ZnO nanofiber mats assembly by electro-centrifuge spinning for efficient photo-degradation of bentazon herbicide: tuning composition and process optimization. J Cleaner Prod. 2023;414:137652. https://doi.org/10.1016/j.jclepro.2023.137652
18. Khanmohammadi M, Rahmani F, Shahrouzi JR, Sene RA. Insightful properties-performance study of Ti–Cu–O heterojunction sonochemically embedded in mesoporous silica matrix for efficient tetracycline adsorption and photodegradation: RSM and ANN-based modeling and optimization. Chemosphere. 2024;352:141223. https://doi. org/10.1016/j.chemosphere.2024.141223.
19. Moradi M, Sene RA, Rahmani F, Rezakazemi M. Efficient photodegradation of paraquat herbicide over TiO2-WO3 heterojunction embedded in diatomite matrix and process optimization. Environ Sci Pollut Res. 2023;30(44):99675-93. http://dx.doi.org/10.1007/s11356-023-29306-x.
20.Abedi F, Allahyari S, Rahemi N. Treatment of pharmaceutical wastewater using inexpensive photocatalysts of copper oxide-ion exchanged clinoptilolite under visible light. Iran J Chem Eng.2023;22(128):135-144. https://doi:10.22034/ijche.2022.343136.1205.
21. Kalantari K, Asgari E. Synthesis of ZnO-ZnS nanocomposite and its application in photocatalytic degradation of direct red 80 dye. Iran Chem Eng J. 2023;22(129):98-109. https://doi.org/10.22034/ijche.2022. 361210.1236.
22. Moradi A, Khamforoush M, Rahmani F, Ajamein H. Synthesis of 0D/1D electrospun titania nanofibers incorporating CuO nanoparticles for tetracycline photodegradation and modeling and optimization of the removal process. Mater Sci Eng B. 2023;297:116711. https://doi.org/10.1016/j.mseb.2023.116711.
23. Coronado-Castañeda R, Maya-Treviño M, Garza-González E, Peral J, Villanueva-Rodríguez M, Hernández-Ramírez A. Photocatalytic degradation and toxicity reduction of isoniazid using β-Bi2O3 in real wastewater. Catal Today. 2020;341:82-9. https://doi.org/10.1016/j.cattod.2019.01. 028.
24. Bouddouch A, Akhsassi B, Amaterz E, Bakiz B, Taoufyq A, Villain S, et al. Photodegradation under UV light irradiation of various types and systems of organic pollutants in the presence of a performant BiPO4 photocatalyst. Catal. 2022;12(7):691. https://doi.org/ 10.3390/catal12070691.
25. Wang Q, Hui J, Huang Y, Ding Y, Cai Y, Yin S, et al. The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes. Mater Sci Semicond Process. 2014;17:87-93. http://dx.doi.org/10.1016/j.mssp.2013.08. 018.
26. Saddique Z, Imran M, Javaid A, Latif S, Hussain N, Kowal P, Boczkaj G. Band engineering of BiOBr based materials for photocatalytic wastewater treatment via advanced oxidation processes (AOPs)–A review. Water Resour Ind. 2023;29:100211. https://doi.org/10.1016/j.wri.2023.100211.
27. Zandi A, Akbari Sene R, Rahmani F. Evaluation of structural-optical properties and catalytic performance of BiOI-CuO heterojunction photocomposite embedded in zeolitic matrix. J. Mineral Resour Eng. 2024;9(4):95-113. https://doi.org/10.30479/jmre.2024.18720.1642.
28. Siedlecka EM. Application of bismuth-based photocatalysts in environmental protection. Nanophotocatalysis and Environmental Applications: Detoxification and Disinfection. 2020:87-118.
29. Wei XX, Cui H, Guo S, Zhao L, Li W. Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment. J Hazard Mater. 2013;263 Pt 2:650-8. https://doi.org/10.1016/j.jhazmat.2013.10.027.
30. Li X, Zhang D, Bai R, Mo R, Yang C, Li C, Han Y. Zr-MOFs based BiOBr/UiO-66 nanoplates with enhanced photocatalytic activity for tetracycline degradation under visible light irradiation. AIP Advances. 2020;10(12). https://doi.org/10.1063/5.0030228.
31. Winarta J, Shan B, Mcintyre SM, Ye L, Wang C, Liu J, Mu B. A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework. Cryst Growth Des. 2019;20(2):1347-62. https:// doi.org/10.1021/acs.cgd.9b00955.
32. Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, et al. Recent advances in metal-organic framework membranes for water treatment: A review. Sci Total Environ. 2021;800:149662. https://doi.org/10.1016/j.scitotenv.2021. 149662.
33. Sar R, Babaei M, Raei M, Taghavi S. Adsorptive removal of dibenzothiophene using UVM-7@ZIF-8 as nano-adsorbent in liquid phase at room temperature. PR. https://doi.org/10.22078/pr.2018.3247.2499 [In Persian].
34. Mehdikhani A, Fallah Arani H, Dabir F, Ghanbari A. Effect of peroxides and washing process on hydrogen adsorption capacity in MOF-5 metal-organic framework synthesized by direct mixing method. Adv Mater Eng. 2022;41(2):17-36. https://doi.org/10.47176/jame.41.2.22143 [In persian]. 
35.Chen Y, Zhou B, Liu H, Yuan R, Wang X, Feng Z, et al. Strategies to improve adsorption and photocatalytic performance of metal-organic frameworks (MOFs) for perfluoroalkyl and polyfluoroalkyl substances (PFASs) removal from water: A review. Environ Res. 2024;240(Pt 1):117483. https://doi.org/10.1016/j.envres.2023.117483.
36. Sha Z, Sun J, Chan HSO, Jaenicke S, Wu J. Bismuth tungstate incorporated zirconium metal–organic framework composite with enhanced visible-light photocatalytic performance. RSC Adv. 2014;4(110):64977-84. https://doi. org/10.1039/C4RA13000F.
37. Sha Z, Wu J. Enhanced visible-light photocatalytic performance of BiOBr/UiO-66 (Zr) composite for dye degradation with the assistance of UiO66. RSC Adv. 2015;5(49):39592-600. https://doi.org/10.1039/C5RA048 69A.
38. Xue Y, Wang P, Wang C, Ao Y. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: Environmental factors, mechanisms and degradation pathways. Chemosphere. 2018;497:203-505. https://doi.org/10.1016/j.chemosphere. 2018.04.017.
39. Ding J, Yang Z, He C, Tong X, Li Y, Niu X, Zhang H. UiO-66 (Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation. J Colloid Interface Sci. 2017;497:126-33. https://doi.org/10.1016/j.jcis.2017.02. 060.
40. Kim HG, Choi K, Lee K, Lee S, Jung KW, Choi JW. Controlling the structural robustness of zirconium-based metal organic frameworks for efficient adsorption on tetracycline antibiotics. Water. 2021;13(13):1869. https:// doi.org/10.3390/w13131869.
41. Imam SS, Adnan R, Mohd Kaus NH, Hussin MH. Room-temperature synthesis of Bi/BiOBr composites for the catalytic degradation of ciprofloxacin using indoor fluorescent light illumination. J Mater Sci. Mater Electron. 2019;30:6263-76. https://10.1007/s10854-019-00930-z.
42. Sene RA, Moradi G, Sharifnia S, Rahmani F. Hydrogen evolution via water splitting using TiO2 nanoparticles immobilized on aluminosilicate mineral: synergistic effect of porous mineral and TiO2 content. Desalin Water Treat. 2020;208:273-86. http://dx.doi.org/10.5004/dwt.2020. 264 03.
43. Delir Kheyrollahi Nezhad P, Haghighi M, Rahmani F. CO2/O2 enhanced ethane dehydrogenation over a sol–gel synthesized Ni/ZrO2–MgO nanocatalyst: effects of Mgo, ZrO2, and NiO on the catalytic performance. Part Sci Technol. 2018;36(8):1017-28. https://doi.org/10.1080/ 02726351.2017.1340376.
44. Sajjadi SM, Haghighi M, Rahmani F. Syngas production from CO2-reforming of CH4 over sol-gel synthesized Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst: effect of ZrO2 precursor on catalyst properties and performance. Quim. Nova. 2015;38(4):459-65. http://dx.doi.org/10.5935/0100-4042. 20150034.
45. Delir Kheyrollahi Nezhad P, Haghighi M, Jodeiri N, Rahmani F. Sol–gel preparation of NiO/ZrO2 (x) –MgO (100−x) nanocatalyst used in CO2/O2 oxidative dehydrogenation of ethane to ethylene: influence of Mg/Zr ratio on catalytic performance. J Sol-Gel Sci Technol. 2016;80:436-50. https://doi.org/10.1007/s10971-016-4120 -2.
46. Zamani L, Sadjadi S, Ashouri F, Jahangiri-Rad M. Carbamazepine removal from aqueous solution by synthesized reduced graphene oxide-nano zero valent iron (Fe0-rGO) composite: theory, process optimization, and coexisting drugs effects. Water Sci Technol. 2021;84(9): 2557–2577. https://doi.org/10.2166/wst.2021.457.
47. Tian H, Gu Y, Zhou H, Huang Y, Fang Y, Li R, Tang C. BiOBr@ UiO-66 photocatalysts with abundant activated sites for the enhanced photodegradation of rhodamine b under visible light irradiation. Mater Sci Eng B. 2022;271;115297. https://doi.org/10.1016/j.mseb.2021.11 5297.
48. Wang A, Zhou Y, Wang Z, Chen M, Sun L, Liu X. Titanium incorporated with UiO-66 (Zr)-type metal–organic framework (MOF) for photocatalytic application. RSC Adv. 2016;6(5):3671-9. https://doi.org/10.1039/C5RA241 35A.
49. Shen L, Huang L, Liang S, Liang R, Qin N, Wu L. Electrostatically derived self-assembly of NH2-mediated zirconium MOFs with graphene for photocatalytic reduction of Cr (vi). RSC Adv. 2014;4(5):2546-9. https://doi.org/ 10.1039/C3RA45848B
50. Ioannidou T, Anagnostopoulou M, Papoulis D, Christoforidis KC, Vasiliadou IA. UiO-66/Palygorskite /TiO2 ternary composites as adsorbents and photocatalysts for methyl orange removal. Appl Sci. 2022;12(16):8223. https://doi.org/10.3390/app12168223