ارزیابی خطر استفاده از نانو مواد سلولزی مختلف در صنایع خمیر و کاغذسازی

نوع مقاله : مقاله مروری

نویسنده

استادیار، گروه تخصصی علوم و مهندسی کاغذ، دانشکده مهندسی چوب و کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

نانوسلولز‌‌ها، نانونشاسته‌‌ها و کیتین‌‌های نانوساختاری، فراوان‌ترین نانو مواد زیستی تجدیدپذیر محسوب می‌شوند. این ترکیبات به دلیل ویژگی‌‌های خاص ساختار نانو به‌‌عنوان عوامل بهبود ‌‌دهنده کارآیی بسیاری از فرآورده‌‌های آتی معرفی شدند. اما تاکنون مشخص نشده است که ویژگی‌‌های خاص نانو چگونه بر ایمنی نانو مواد زیستی تاثیر می‌گذارد زیرا آنها به عوامل زیادی بستگی دارند و تاکنون عوامل بسیار کمی از آنها مانند برهم‌کنش‌‌های آنها با سلول‌‌ها و موجودات زنده و همچنین شیوه در معرض‌‌گذاری شناسایی شده‌اند. به‌طور کلی نانو مواد زیستی به دلیل منشا طبیعی و سازگاری با محیط‌زیست شکل‌های حجیم آنها، ترکیباتی ایمن محسوب می‌‌شوند. نتایج منتشر شده در مورد ایمنی نانو مواد زیستی نشان داد که نانو مواد معمولاً برای بشر یا محیط‌زیست سمی نیستند. اما ترکیبات کاملا بی‌‌اثر هم نیستند و ممکن است با محیط اطراف برهم‌‌کنش‌‌هایی نیز داشته باشند (به‌‌عنوان مثال اثرات التهابی در آزمایش‌های حیوانی). اندازه و شکل ذرات، ویژگی‌‌های تجمع، درجه شاخه‌‌ای شدن و ویژگی‌‌های سطح ویژه در بین سایر عوامل ممکن است برهم‌‌کنش‌‌های نانو مواد زیستی را با سلول‌‌ها و موجودات زنده تحت تاثیر قرار دهند. علاوه‌براین، به‌‌دلیل تغییر زیاد در ویژگی‌‌های نانو مواد زیستی، نتایج آزمایش سمیت به‌دست آمده برای نمونه‌‌های آزمایش شده معتبر گزارش شده است. اما این مسئله همچنان به تحقیقات و دانش بیشتری در مورد برهم‌‌کنش‌‌های نانو مواد با موجودات زنده نیاز دارد. لذا، ایمنی نانو مواد زیستی باید به‌طور موردی ارزیابی شود و قوانین و دستورالعمل‌های راهنمای فعلی در مورد استفاده از نانو مواد نیازمند توسعه می‌باشد. علاوه بر این تولیدکنندگان نانو مواد‌‌ زیستی باید مشابه با محصولات برپایه آنها از ایمنی محصولات خود طی چرخه کلی حیات فرآورده‌‌ها اطمینان حاصل نمایند. نانو ذرات، به دلیل اندازه کوچک و سطح زیاد، واکنش‌پذیری بسیار زیادی از خود نشان می‌دهند. همین ویژگی موجب می‌شود تا نسبت به ذرات درشت‌تر خطر حریق و انفجار بیشتری ایجاد کنند. از مهم‌ترین روش‌های کنترل مواجهه با نانو ذرات می‌توان به حذف خطر، جایگزینی مواد و فرآیندهای پرخطر با مواد و فرآیندهای کم خطر، محصورکردن، کنترل‌های مهندسی، کنترل‌های مدیریتی و استفاده از تجهیزات حفاظت فردی اشاره کرد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Risk Assessment of Using Different Cellulose Nanomaterials in Pulp and Paper Industries

نویسنده [English]

  • Iman Akbarpour
Department of Paper Science and Engineering, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR)
چکیده [English]

Nanocelluloses, nanosized starches, and nanostructured chitins are the most abundant renewable biobased nanomaterials. These compounds were introduced as performance-enhancing agents for many future products due to their unique nanostructured properties. But, it was not yet determined how these specific properties influence biobased nanomaterial safety because they depend on many parameters. So far, few factors have been identified, such as their interactions with cells and organisms and exposure routes. Biobased nanomaterials are considered safe compounds due to their natural origin and environmental compatibility of their bulk forms. Published results on the safety of biobased nanomaterials show that they are generally not toxic to humans or the environment. However, they are not inert compounds and may also interact with the surrounding (for example, inflammatory effects in animal experiments. Among other factors, particle size and shape, aggregation characteristics, degree of branching, and specific surface properties, may affect the interactions of biological nanomaterials with cells and organisms. In addition, due to the significant variation in the properties of biobased nanomaterials, the toxicity test results obtained for the analyzed samples have been reported as valid. But this still requires more research and knowledge about the interactions of nanomaterials with living organisms. Therefore, the safety of biobased nanomaterials should be evaluated on a case-by-case basis, and the current guidelines and protocols for the use of nanomaterials need to be sufficiently developed. In addition, manufacturers of biobased nanomaterials should ensure the safety of their products during the whole life cycle of products, similar to products based on them. Nanoparticles are very reactive due to their small size and large surface area. This feature increases the risk of fire and explosion compared to larger particles. The most important methods for controlling exposure to nanoparticles are risk elimination, replacement of high-risk materials and processes with low-risk materials and processes, enclosure, engineering controls, management controls, and the use of personal protective equipment.

کلیدواژه‌ها [English]

  • Pulp and paper industry
  • Cellulose biobased nanomaterials
  • Inert compounds
  • Safety of nanomaterials
  • Toxicity
  • Engineering controls
. اکبرپور، "فرصت‌های زیست محیطی و تجاری استفاده از فن‌آوری نانوتکنولوژی برای کاهش انتشار ضایعات در صنعت کاغذسازی"، اولین کنفرانس ملی نانوفناوری و کاربرد آن در کشاورزی و منابع طبیعی، 1391.
2. S. I. Jeong, S. E. Lee, H. Yang, Y. H. Jing, C. S. Park, Y.S. Park, "Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals", Mol. Cell Toxicol. 6: 373–380, 2010.
3. "Scientific Committee on Food, Opinion on Microcrystalline Cellulose", http://ec.europa.eu/food/fs/sc/oldcomm7/out25 en. html, 1997.
4. ا. اکبرپور، م. پسرکلو، ع. قاسمیان، ع. شاکری، "کاربرد نانو مواد و نانو بلور سلولزی در تقویت نانوکامپوزیت‌های پلیمری"، اولین همایش ملی نانومواد و نانوتکنولوژی، شاهرود، ایران، 1390.
5. "وب‌سایت رسمی صنعت و بازار"، کاربرد نانو فناوری در رنگ‌های داخل کشور، https://nanoindustry.ir/note/5054، 1398.
6. T. Kovacs, V. Naish, B. O’Connor, C. Blaise, F. Gagne, L. Hall, V. Trudeau, P. Martel, "An ecotoxicological characterization of nanocrystalline cellulose (NCC)", Nanotoxicology. 4, 255–270, 2010.
7. N. Lin, J. Huang, A. Dufresne, Preparation, "properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review", Nanoscale. 4. 2012.
8. I. Akbarpour., F. Kool., M. Ghaffari., M. Imani., A. Soleimani. M. Akbari, "Nano-cellulose- based composites and their commercial uses", 4th International Conference on Enviromental Challenges Dendrochronology, Sari, Iran, 2014.
9. "Food Standard Agency, Current EU approved additives and their E Numbers", 14 March, http://www.food.gov.uk/policy-advice/additivesbranch/ enumberlist#anchor 7, 2012.
10. "WHO, International Agency for Research on Cancer, IARC monographs-100C", Wood Dust, http://monographs.iarc.fr/ENG/ Monographs/vol62/mono62.pdf, 2012.
11. "WHO Food Additives Series", WHO Food Additives and Contaminants. 2012, 40: 899.
12. U.P. Agarwal, R. Sabo, R.S. Reiner, C.M. Clemons, A.W. Rudie, "Spatially resolved characterization of cellulose nanocrystal-polypropylene composites by confocal Raman microscopy", Appl. pectrosc. 66, 750–756, 2012
13. W. Han, Y. Yu, N. Li, L. Wang.. "Application and safety assessment for nanocomposite materials in food packaging", Chin. Sci. Bull. 56, 1216-1225, 2011
14- "WHO, International Agency for Research on Cancer, Index for Agents classified by IARC Monographs", http://monographs.iarc.fr/ ENG/Classification/ index.php, 2012.
15. "WHO Food Additives Series, Microcrystalline cellulose. 49th Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA)", http://www.inchem.org/ documents/ jecfa/ jecmono/v040je03. Htm, 2012.
16. R. T. Cullen, B. G. Miller, A. D. Jones, J. M. G. Davis. "Toxicity of cellulose fibres", Ann. Occup. Hyg. 46, 81-84. 2002.
17. R. Jayakumar, M. Prabaharan, S.V. Nair, H. TamuraResearch review paper. Novel chitin and chitosan nanofibres in biomedical applications. Biotechnol. Adv. 28, 142-150, 2010.
18. "Guidance Manual for the Testing of Manufactured Nanomaterials: OECD’s Sponsorship Programme, First revision", 2 June, Series on the Safety of Manufactured Nanomaterials, http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/ jm/mono(2009) 20/rev& doclanguage=en, 2012.
19. "European Chemical Agency (ECHA), Guidance on information requirements and chemical safety assessment", http://echa.europa.eu/guidance-documents/guidance-on informa tion -requirements-and-chemical-safety-assessment.
20. "European Food Safety Authority (EFSA), Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain", 10 May, http://www.efsa.europa.eu/en/efsajournal/pub/ 2140.htm, 2011.
21. T. Tammelin, U. Hippi, A. Salminen, "Method for the preparation of NFC films on supports", Patent No. WO/2013/060934, 2013.
22. "Scenhir", Scientific committee on emerging and newly identified health risks, risk assessment of products of nanotechnologies. european commission, http://ec.europa.eu/ health/ph risk/committees/04 scenihr/ docs/ scenihr o 023.pdf,  2009.
23. "U.S. Food and Drug Administration (FDA), Draft guidance for industry, Safety of Nanomaterials in Cosmetic Products", http://www.fda.gov/Cosmetics/Guidance Compliance Regula toryInformation/ GuidanceDocuments/ ucm300886 .htm.
24. R. T. Cullen, B. G. Miller, S. Clark, J. M. G. Davis, "Tumorigenicity of cellulose fibers injected into the rat peritoneal cavity", Inhal. Toxicol. 14, 685–703, 2002.
25 Technical report, Nanotechnologies-Nanomaterial risk evaluation, ISO/TR 13121, 2011.
26. L. Berglund, A. IMohanty, M. Misra, L. Drzal. "Natural fibers, biopolymers, and biocomposites", Taylor & Francis Group, CRC Press, Boca Raton, FL, 2005.
27. J. Rouhiainen, I. Tsitko, M. Vippola, J. Koivisto, "Literature study on risks and risk assessment methods related to nanobased products and the recommended methodology for risk of nanofibrillar cellulose products", A public report of Scale-up Nanoparticles in Modern Papermaking, 21 June, http://sunpap.vtt.fi/pdf/ SUNPAP WP10 DEL10 1 20100621 PMC.pdf. 2010.
28. K. Kummerer, J. Menz, T. Schubert, W. Thielemans. "Biodegradability of organic nanoparticles in the aqueous environment", Chemosphere, 82, 1387-1392, 2011.
29. M. J. D. Clift, E. J. Foster, D. Vanhecke, D. Struder, P. Wick, P. Gehr, B. Rothen- Rutishauser, C. Weder, "Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture", Biomacromolecules. 12, 3666-3673, 2011.
30. M. Pitkanen, A. Sneck, H. P. Hentze, J. Sievanen, J. Hiltunen, E. Hellen, U. Honkalampi, A. von, "Wright. Nanofibrillar cellulose-assessment of cytotoxic and genotoxic properties in vitro", Tappi- international conference on nanotechnology for the forest products industry, September 27-29, Otaniemi, Espoo, Finland, 2010.
31. "Nanotechnologies-Health and safety practices in occupational settings relevant to nanotechnologies ",ISO/TR 12885:2008, 2008.
32. I. Akbarpour, M. Mashkor, E. Afra, "Preparation of Nano or Micro Scale Cellulose Films and Their Properties in Different Cellulosic Resources", First National Conference on Nanomaterials and Nanotechnology (CNN), Shahrood, Iran, 2012.
33. S. Kamel ,"Nanotechnology and its applications in lignocellulosic composites, a mini review", eXPRESS Polym. Lett. 1 . 546–575, 2007.
34. R. A. N. Pertile, S. Moreira, R. M. G. da Costa, A. Correia, L. Guardao, F. Gartner, M. Vilanova, M. Gama. "Bacterial cellulose: long-term biocompatibility studies", J. Biomater. Sci. 23, 1339-1354, 2012.
35. P. Morganti, G. Morganti,  A. Morganti. "Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society", Nanotechnol.Sci. Appl. 4, 123–129. 2011.
36. H. Ni, S. Zeng, J. Wu, X. Cheng, T. Luo, W. Wang, W. Zeng, Y. Chen, "Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation", Biomed. Mater. Eng. 22, 121-127, 2012
37. M. Osterberg, E. D. Cranston, Special issue on nanocellulose. Nord. Pulp Paper Res. J. 29, 1-2, 2014.
38- A. Qurashi, "Chitin and chitosan polymer nanofibrous membranes and their biological applications", Handbook of bioplastics and biocomposites engingeering application, S. Pilla (Ed.) Salem, Massachusetts, 2011.
39. U. P. Agarwal, R. Sabo, R. S. Reiner, C. M. Clemons, A.W. Rudie, "Spatially resolved characterization of cellulose nanocrystal-polypropylene composites by confocal Raman microscopy", Appl. pectrosc. 66, 750–756, 2012.
40. R. Jayakumar, D. Menon, K. Manzoor, S. V. Nair and H. Tamura, "Biomedical applications of chitin and chitosan based nanomaterials- a short review", Carbohydr. Polym. 82, 227–232, 2010.
41. M. Vikman, J. Vartiainen, I. Tsitko, P. Korhonen, "Biodegradability and compostability of nanofibrillated cellulose products, Environmental polymer degradation and stability, in preparation. nanoparticles in the aqueous environment", Chemosphere. 82, 1387–1392, 2011.
42. B. O Connor, "Ensuring safety of manufactured nanocrystalline cellulose", Presentation in OECD conference, 2009.
43. B. O’Connor, "Ensuring safety of manufactured nanocrystalline cellulose. A risk assessment under Canada’s new substances notification regulations", TAPPI International Conference on Nanotechnology for Renewable Materials, 2011.
44. S. Moreira, N.B. Silva, J. Almeida-Lima, H.A.O. Rocha, S.R.B. Medeiros, C. Alves, F.M. Cama, "Nanofibers: in vitro study of genotoxicity and cell proliferation", Toxicol. Lett. 189, 235–241.
45. J. Vartiainen, T. P¨ohler, K. Sirola, L. Pylkk¨anen, H. Alenius, J. Hokkinen, U. Tapper, P. Lahtinen, A. Kapanen, K. Putkisto, P. Hiekkataipale, P. Eronen, J. Ruokolainen, A. Laukkanen, "Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose", Cellul. 18, 775–786, 2011.
46. J. Rouhiainen, I. Tsitko, M. Vippola, J. Koivisto, "Literature study on risks and risk assessment methods related to nanobased products and the recommended methodology for risk of nanofibrillar cellulose products", A public report of Scale-up Nanoparticles in Modern Papermaking,  http://sunpap.vtt.fi/pdf/ SUNPAP WP10 DEL10 1 20100621 PMC.pdf, 2010.
47. A. Kapanen, J. Vartiainen, T. Lappalainen, P. Korhonen, M. Vikman, "Toxicity and characteristics of microfibrillated cellulose in kinetic luminescent bacteria test environment", 6th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials, September 19-21, London, UK. 2011.
48. M.S. Peresin, J. Vartiainen, V. Kunnari, T. Kaljunen, T. Tammelin, P. Qvintus, "Large-scale nanofibrillated cellulose film: An overview on its production, properties, and potential applications", 4th International Conference on Pulping, Papermaking and Biotechnology (ICPPB’12), Nanjing, China, 7–9 November, 2012.
49. J. Vartiainen, T. Kaljunen, V. Kunnari, P. Lahtinen, A. Salminen, J. Seppala, T. Tammelin, "Nanocellulose films: towards large scale and continuous production", Proceedings of 26th IAPRI Symposium on Packaging, 10–13June, Espoo, Finland, 2013.
50. "آئین کار سلامت و ایمنی در محیط‌های کار با نانو مواد"، مؤسسه استاندارد و تحقیقات صنعتی ایران، شماره استاندارد 12325، چاپ اول، ص 36، 1388.
51. "Approaches to Safe Nanotechnology-An Information Exchange with NIOSH U.S. National Institute for Occupational Safety and Health", Centers for Disease Control and Prevention, 2006.
52. J. Rouhiainen, V. Vaananen, I. Tsitko and J. Kautto, "Risk Assessment of Nanofibrillated Cellulose in Occupational Settings", A Presentation in SUNPAP Final Conference, Milan, Italy, June 19-20, http://sunpap.vtt.fi/finalconference-2012.htm, 2012.
53. ق عموعابدینی، ع نادری و ج. ملکوتی‌خواه، "راهنمای حمل، استفاده و دفع ایمن نانومواد در محیط های کاری"، ستاد ویژه توسعه فناوری نانو، 23-1 ،1387.