ارزیابی روش‌های تخمین عمق نفوذ ماده استحکام‌بخش در مصالح متخلخل یادمان‌های تاریخی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشیار، دانشکده حفاظت آثار فرهنگی، دانشگاه هنر اسالمی تبریز، تبریز، ایران، کدپستی: 5164736931.

2 دانشجوی دکتری، دانشکده حفاظت و مرمت، دانشگاه هنر اصفهان، اصفهان، ایران، کدپستی: 8173887681.

چکیده

استحکام‌‌بخشی از مهم‌ترین اقدامات حفاظتی و مرمتی است که برای پایدارسازی آثار آسیب‌دیده و به‌‌خصوص یادمان‌‌های تاریخی، مورداستفاده قرار می‌گیرد. عمدتاً سنگ‌‌ها، آجرها و ملاط‌‌ها مصالحی متخلخل ناهمگن و ازلحاظ ترکیب شیمیایی پیچیده هستند و فرآیند استحکام‌‌بخشی آن‌ها به متغیرهای زیادی همچون خواص ذاتی، میزان آسیب‌دیدگی، ماده استحکام‌بخش و شرایط و روش اعمال ماده وابسته است. از طرفی مسئله عمق نفوذ ماده استحکام‌بخش چالشی در استفاده از مواد و بررسی کارایی و اثربخشی آن‌ها است. در این پژوهش روش‌‌های معمول برای سنجش میزان عمق نفوذ ماده پس از درمان ماده استحکام‌بخش در آثار متخلخل با رویکرد توصیفی-تحلیلی و با استفاده از منابع کتابخانه‌‌ای، موردبررسی قرارگرفته است. این مقاله به بررسی روش‌های مختلف شیمیایی، مکانیکی، تصویری و طیف‌سنجی برای اندازه‌گیری عمق نفوذ مواد تثبیت‌کننده در مواد و مصالح متخلخل می‌پردازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Methods for Estimating the Penetration Depth of Consolidant Material in Porous Materials of Historical Monuments

نویسندگان [English]

  • Mehdi Razani 1
  • Leyli Nemani Khiavi 2
1 Faculty of Cultural Materials Conservation, Tabriz Islamic Art University, P.O. Code: 5164736931, Tabriz, Iran
2 Faculty of Conservation and restoration, Isfahan Art University, P.O. Code: 8173887681, Isfahan, Iran.
چکیده [English]

Consolidation is one of the most important processes for conservation and restoration, particularly for historical monuments. It is typically made of porous, heterogeneous, and complex materials such as stones, bricks, and mortars. The effectiveness of the consolidation process depends on various factors, including the inherent properties and degree of damage to the material, as well as the condition and method of application of the consolidating material. However, achieving sufficient penetration depth of the reinforcing material is a challenge and can negatively impact the efficiency and effectiveness of the used materials. This research investigates conventional methods for measuring the penetration depth of consolidating materials in porous substrates. This research investigates imaging and spectroscopy techniques for measuring the penetration depth of consolidating materials in porous substrates.

کلیدواژه‌ها [English]

  • Conservation and restoration
  • Consolidating
  • Coating
  • Materials
  • Porosity. Penetration depth
1.     Xarrié i Poveda M. El llenguatge de la conservació-restauració d'obres d'art. 2015.
2.     ASTM, E2167–01,2008 Ginell, ASTM International, Wessel WSD, Searles C. Standard Guide for Selection and Use of Stone Consolidants. West Conshohocken, PA, 2008.
3.     Amoroso J, Fasina J, stone wear and protection, atmospheric pollution, cleaning, strengthening and protection. 1983, Translator: Rasul vatan-Dost, Tehran: Cultural Heritage (In Persian)
4.     Slavíková M, Krejčí F, Žemlička J, Pech M, Kotlík P, Jakůbek J. X-ray radiography and tomography for monitoring the penetration depth of consolidants in Opuka–the building stone of Prague monuments. J Cult Herit. 2012;13(4):357-64.
https://doi.org/10.1016/j.culher.2012.01.010
5.     Bayer K. Možnosti hodnocení efektivity konsolidace porézních anorganických materiálů. Padesát let používání organokřemičitanů na území České republiky, Proceedings of ICOMOS. 2008:35-42.
6.     Pinto AF, Rodrigues JD. Stone consolidation: The role of treatment procedures. J Cult Herit. 2008;9(1):38-53.
https://doi.org/10.1016/j.culher.2007.06.004.
7.     Snethlage R, Wendler E. Chemical conservation of stone structures. Ullmann’s encyclopedia of industrial chemistry electronic release 2001.
8.     Brizi L, Camaiti M, Bortolotti V, Fantazzini P, Blümich B, Haber-Pohlmeier S. One and two-dimensional NMR to evaluate the performance of consolidants in porous media with a wide range of pore sizes: Applications to cultural heritage. Microporous and Mesoporous Materials. 2018 1;269:186-90.
https://doi.org/10.1016/j.micromeso.2017.08.014
9.     Striegel MF, Guin EB, Hallett K, Sandoval D, Swingle R, Knox K, Best F, Fornea S. Air pollution, coatings, and cultural resources. Progress in organic coatings. 2003 1;48(2-4):281-8. https://doi.org/10.1016/j.porgcoat.2003.05.001
10.  Cai H, Liu X. Freeze-thaw durability of concrete: ice formation process in pores. Cement and concrete research. 1998;28(9):1281-7. https://doi.org/10.1016/S0008-8846(98)00103-3
11.   Hutchinson AJ, Johnson JB, Thompson GE, Wood GC, Sage PW, Cooke MJ. Stone degradation due to wet deposition of pollutants. Corros Sci. 1993;34(11):1881-98.
     https://doi.org/10.1016/0010-938X(93)90025-C.
12.  Sanjurjo-Sánchez J, Alves C. Decay effects of pollutants on stony materials in the built environment. Environ Chem Lett. 2012; 10:131-43. https://doi.org/10.1007/s10311-011-0346-y
13.  Vallet JM, Gosselin C, Bromblet P, Rolland O, Vergès-Belmin V, Kloppmann W. Origin of salts in stone monument degradation using sulphur and oxygen isotopes: First results of the Bourges cathedral (France). J Geochem Explor. 2006; 88(1-3):358-62.
      https://doi.org/10.1016/j.gexplo.2005.08.075
14.  Scherer GW, Wheeler GS. Silicate consolidants for stone. InKey Engineering Materials. Trans Tech Publications Ltd, 2009.
15.  Doehene E, Price CA. Stone Conservation – An overview of current research. Second edition. Getty Publications; the Getty Conservation Institute: Los Angeles (CA), 2010.
16.  Pinto AF, Rodrigues JD. Stone consolidation: The role of treatment procedures. J Cult Herit. 2008;9(1):38-53.
       https://doi.org/10.1016/j.culher.2007.06.004.
17.  Jokilehto J. History of architectural conservation. Routledge; 2007.
18.  Rodrigues JD. Basic steps in conservation interventions Multidisciplinary and interdisciplinary requirements, Charisma international course in stone conservation Lisbon, May 7th- 18th, 2012.
19.  Kamke FA, Lee JN. Adhesive penetration in wood—a review. Wood and Fiber Science. 2007 27:205-20.
20.  Christensen M, Kutzke H, Hansen FK. New materials used for the consolidation of archaeological wood–past attempts, present struggles, and future requirements. J Cult Herit. 2012;13(3):S183-90. https://doi.org/10.1016/j.culher.2012.02.013
21.  Abdullahi M, Asgharizadeh S, Razani M. A review of the use of synchrotron radiation in archaeological sciences. Archaeological research. 6 (1). 2019. 155-174. https://doi.org/10.29252/jra.6.1.155 (In Persian).
22.  Ceryan S, Tudes S, Ceryan N. A new quantitative weathering classification for igneous rocks. Environ Geol. 2008; 55:1319-36. https://doi.org/10.1007/s00254-007-1080-4
23.  Topal T, Sözmen B. Deterioration mechanisms of tuffs in Midas monument. Engineering Geology. 2003;68(3-4):201-23.
 https://doi.org/10.1016/S0013-7952(02)00228-4
24.  Razani M, Baghbanan A, Emami SMA. a review of the methods of determining the rate and estimation of weathering depth in volcanic tuffs, the 11th conference on the restoration of historical and cultural monuments and decorations related to architecture, March 2013. Historical and Cultural Monuments Restoration Research Institute Cultural Heritage Research Institute and Tabriz University of Islamic Art (In Persian)
25.  López-Doncel R, Wedekind W, Dohrmann R, Siegesmund S. Historical building stones of Guanajuato, Mexico: weathering, properties and restoration. In12th International Conference on the deterioriation and conservation of Stones, Extend abstracts book 2012.
26.  Feyz niya. S, Dastourani J, Ahmadi H, Ghoddousi J. Investigating sensivity to erosion and sediment yield of formations in Gorgan Drainage basin Journal of the Iranian Natural Res., Vol. 61, No. 1, 2008, pp. 13-27  (In Persian)
27.  Memariyan H. Geology and geotechnical engineering. Tehran University: Tehran. 2013 (In Persian)
28.  Hunt RE. Geotechnical engineering investigation handbook. Crc Press; 2005 Apr 12.
29.  Grassegger G. Decay mechanisms of natural building stones on monuments-A review of the latest theories. Werkstoffe und Werkstoffprüfung im Bauwesen, Hamburgo, Libri BOD. 1999:54-81.
30.  Sedaghat MH. Physical geology (first volume: external processes). Tehran: Payam Noor University (in Persian).
31.  Razani M, Nemani khiyavi L. A Review of Consolidation of Stone with Nanotechnology. Jl Stud Color World, 2022; 10(3), 55-64. https://dorl.net/dor/20.1001.1.22517278.1399.10.3.5.0 (In Persian).
32.  Cnudde V, Dierick M, Vlassenbroeck J, Masschaele B, Lehmann E, Jacobs P, Van Hoorebeke L. Determination of the impregnation depth of siloxanes and ethylsilicates in porous material by neutron radiography. J Cult Herit. 2007 1;8(4):331-8.
 https://doi.org/10.1016/j.culher.2007.08.001
33.  Tamer T. The use of methylene blue adsorption test to assess the clay content of the Cappadocian tuff. In8th= eighth international congress on deterioration and conservation of stone, Berlin, 30 Sept.-4 Oct. 1996: proceedings 1996 (pp. 791-799).
34.  Kumar R, Ginell WS. A new technique for determining the depth of penetration of consolidants into limestone using iodine vapor. Journal of the American Institute for Conservation. 1997 Jan 1;36(2):143-50. https://doi.org/10.1179/019713697806373181
35.  Becerra J, Ortiz P, Martín JM, Zaderenko AP. Nanolimes doped with quantum dots for stone consolidation assessment. Construction and Building Materials. 2019 28;199:581-93.
https://doi.org/10.1016/j.conbuildmat.2018.12.077
36.  Borsoi G, Lubelli B, van Hees R, Veiga R, Silva AS. Optimization of nanolime solvent for the consolidation of coarse porous limestone. Appl. Phys. A. 2016;122:1-0.https://doi.org/10.1007/s00339-016-0382-3.
37.  Bakhshi B, Mohammadi M, Al-hosseini H. Investigation of different improvers on the properties of weak stones. Marine engineering scientific-research journal. 2018 10;13(26):35-45 (In Persian)
38.  Possenti E, Conti C, Gatta GD, Merlini M, Realini M, Colombo C. Synchrotron radiation μ X-ray diffraction in transmission geometry for investigating the penetration depth of conservation treatments on cultural heritage stone materials. Anal Methods. 2020;12(12):1587-94. https://doi.org/10.1039/D0AY00010H
39.  Conti C, Colombo C, Festa G, Hovind J, Cippo EP, Possenti E, Realini M. Investigation of ammonium oxalate diffusion in carbonatic substrates by neutron tomography. J Cult Herit. 2016;19:463-6. https://doi.org/10.1016 /j.culher.2015.12.005.
40.  Raneri S, Barone G, Mazzoleni P, Rabot E. Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging. Appl. Phys. A. 2016;122:1-9. https://doi.org/10.1007/s00339-016-0495-8
41.  Lotzmann S, Sasse HR. Drilling resistance as an indicator for effectiveness of stone consolidation. Astm Special Technical Publication. 1999; 1355:77-89.
42.  Leroux L, Vergès-Belmin V, Costa D, Delgado Rodrigues J, Tiano P, Snethlage R, et al. Measuring the penetration depth of consolidating products: comparison of six methods. InProceedings of the 9th International Congress on Deterioration and Conservation of Stone, Venice, June 2000 Jun 19 (pp. 19-24).
43.  Rodrigues JD, Costa D. A new interpretation methodology for microdrilling data from soft mortars. J Cult Herit. 2016;22:951-5. https://doi.org/10.1016/j.culher.2016.06.010
44.  Pamplona M, Kocher M, Snethlage R, Aires Barros L. Drilling resistance: overview and outlook. Zeitschrift-Deutschen Gesellschaft fur Geowissenschaften. 2007; 158(3):665.
      https://doi.org/10.1127/1860-1804/2007/0158-0665
45.  Al-Naddaf M, Wakid F, Abu Alhassan Y. Micro-Drilling Resistance Measurment: A new technique to Estimate the porosity of A building Stone. Mediterranean Archaeology & Archaeometry. 2013;13(1).
46.  Pinto AP, Rodrigues JD, Bracci S, Sacchi B. The action of APTES as coupling agent of ethylsilicate for limestone and marble consolidation. Proceedings of the International Sym-posium Stone consolidation in cultural heritage, research and practice, Lisbon. 2008:71-9.
47.  Koui M, Zezza F, Kouis D, editors. 10th International Symposium on the Conservation of Monuments in the Mediterranean Basin: Natural and Anthropogenic Hazards and Sustainable Preservation. Springer; 2018. https://doi.org/10.1007/978-3-319-78093-1
48.  Cnudde V, De Kock T, Boone M, De Boever W, Bultreys T, Van Stappen J, Vandevoorde D, Dewanckele J, Derluyn H, Cárdenes V, Van Hoorebeke L. Conservation studies of cultural heritage: X-ray imaging of dynamic processes in building materials. European Journal of Mineralogy. 2015;27(3):269-78.
       https://doi.org/10.1127/ejm/2015/0027-2444.
49.  Gomez M, Cardu M, Mancini R. Nondestructive testing for soundness of stone architectural pieces. InScience, Technology and European Cultural Heritage 1991 Jan 1 (pp. 583-586). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-0237-2.50095-2
50.  Fioretti G, Andriani GF. Ultrasonic wave velocity measurements for detecting decay in carbonate rocks. Quarterly Journal of Engineering Geology and Hydrogeology. 2018;51(2):179-86.
51.   Gil MA, Luna M, Zarzuela R, García-Moreno MV. Quantitative determination of the penetration of a silica-based consolidant in a limestone by FTIR spectroscopy. Vibrational Spectroscopy. 2020;110:103109. https://doi.org/10.1016/j.vibspec.2020.103109
52.  Vasanelli E, Calia A, Luprano V, Micelli F. Ultrasonic pulse velocity test for non-destructive investigations of historical masonries: an experimental study of the effect of frequency and applied load on the response of a limestone. Materials and Structures. 2017 Feb;50:1-1. https://doi.org/10.1617/s11527-016-0892-7
53.  Ropret P, Legan L, Retko K, Špec T, Pondelak A, Škrlep L, Škapin AS. Evaluation of vibrational spectroscopic techniques for consolidants’ penetration depth determination. Journal of Cultural Heritage. 2017; 23:148-56.
       https://doi.org/10.1016/j.culher.2016.07.004
54.  Braun F, Orlowsky J. Non-destructive detection of the efficiency of long-term weathered hydrophobic natural stones using single-sided NMR. J Cult Herit.  2020;41:51-60.
      https://doi.org/10.1080/00393630.2021.2001263
55.  Keine S, Holthausen RS, Raupach M. Single-sided NMR as a non-destructive method for quality evaluation of hydrophobic treatments on natural stones. J Cult Herit. 2019;36:128-34.
       https://doi.org/10.1016/j.culher.2018.07.012
56.  Di Tullio V, Cocca M, Avolio R, Gentile G, Proietti N, Ragni P, Errico ME, Capitani D, Avella M. Unilateral NMR investigation of multifunctional treatments on stones based on colloidal inorganic and organic nanoparticles. Magnetic Resonance in Chemistry. 2015;53(1):64-77. https://doi.org/10.1002/mrc.4136.
57.  Ahmad A, Pamplona M, Simon S. Ultrasonic testing for the investigation and characterization of stone–a non-destructive and transportable tool. Studies in Conservation. 2009;54(sup1):43-53.https://doi.org/10.1179/sic2009.54.Supplement-1.43.
58. Drms – drilling resistance measurement system [Internet]: sint technology S.R.L [cited 2021 Aug 20]. Available from:  https://sint-technology.com/wp-content/uploads/2016/08/MG_4674-1500x 1000.jpgS