مروری برعملکرد وکاربردهای پالس الکتریکی در استخراج مواد رنگزای طبیعی

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه صنایع غذایی، موسسه آموزش عالی بصیر، آبیک، قزوین، ایران

2 مرکز مکانیزاسیون و صنایع، وزارت جهادکشاورزی، تهران، ایران، کد‌پستی: 1593416111.

3 دانشجوی کارشناسی ارشد، موسسه آموزش عالی بصیر، آبیک، قزوین، ایران، کدپستی: 3146713555.

چکیده

در سال‌های اخیر تقاضا برای محصولات غذایی طبیعی با کیفیت مناسب و محصولات غذایی با حداقل فرآوری و با ارزش تغذیه‌‌ای بالا افزایش یافته است. یکی از مهم‌ترین مواد طبیعی مورد تقاضا، مواد رنگزای خوراکی طبیعی می‌‌باشند. میدان‌‌های الکتریکی پالسی یک فناوری نگهداری غیرحرارتی می‌باشد که در پردازش مواد غذایی در دو حوزه‌‌ی اصلی یعنی غیرفعال سازی میکروبی و حفاظت از مواد غذایی مایع، و همچنین افزایش انتقال جرم و بافت در جامدات و مایعات متمرکز است و به دلیل جلوگیری از تغییرات نامطلوب مورد توجه قرار گرفته است. فرآیند پالس الکتریکی روشی است که در آن از میدان‌‌های الکتریکی پالس‌‌دار با ولتاژ بالا در زمان کوتاه برای مواد غذایی که بین دو الکترود قرار گرفته است، استفاده می‌‌شود. به دلیل کوتاه بودن زمان پالس‌‌ها، گرمای کمی در ماده غذایی ایجاد می‌شود و بدین ترتیب در مواد غذایی که تحت فرآیند پالس الکتریک قرار گرفته‌‌اند، مواد مغذی، ویتامین‌ها، بافت و عطر و طعم و نیز میکروساختار ماده غذایی نسبت به نمونه‌‌هایی که فرآیند حرارتی به آنها اعمال می‌‌شود بهتر حفظ می‌‌گردد. مواد رنگزای طبیعی به فرآیندهای اعمال شده در روش‌های استخراج مرسوم مانند تنش‌‌های حرارتی، مکانیکی و شیمیایی بسیار حساس هستند. در این راستا، فناوری میدان الکتریکی پالسی(PEF) به عنوان یک جایگزین غیرحرارتی می‌توان امیدوار بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of the Performance and Applications of Electric Pulse in the Extraction of Natural Dye

نویسندگان [English]

  • Mahdieh Ghamary 1 2
  • Zahra Salehi 3
1 Department of Food Industry, Basir Institute of Higher Education, Abyek, Qazvin, Iran.
2 Agricultural mechanisation and industrial development center, Ministry of Agriculture-Jahad, Tehran, Iran.
3 Department of Food Industry, Basir Institute of Higher Education, P. O. Code: 3441356611, Abyek, Qazvin, Iran.
چکیده [English]

In recent years, the demand for good quality natural products and minimally processed products with high nutritional value has increased. One of the most important natural materials in demand is natural edible dye. Pulsed electric fields in food processing focus on two main areas: microbial inactivation and preservation of liquid foods and enhancing mass and tissue transfer in solids and liquids. The pulse process uses pulsed electric fields with high voltage, which are used quickly for the food between two electrodes. Due to the short duration of the pulses, a little heat is generated in the foodstuff. Thus, the nutrients, vitamins, texture and flavour, as well as the microstructure of the foodstuff, are better preserved than the samples that are subjected to the thermal process. Natural dyes are very sensitive to the processes applied in conventional extraction techniques, such as thermal, mechanical and chemical stresses. Pulsed electric field (PEF) technology is promising as a non-thermal alternative.

کلیدواژه‌ها [English]

  • Electric pulse
  • Extraction
  • Natural dye
  • Food industry
1. Joyandeh H, Nosrati Gh, The effect of pulsed electric fields on microorganisms, enzymes and food compounds, The 11th national conference on sustainable agriculture and natural resources,1400 [In Persian].
2. Barbosa-Canovas GV, Howard Zhang Q. In Pulsed Electric Fields in Food Processing. Washington, DC: Technomic. 2001, 289.
3. Sadeghi R, Emamjomeh Z, Karimi M, The effect of electric pulse processes on the synthesis of bioactive compounds in food, Regional conference of Food and Biotechnology, Kermanshah, 1388 [In Persian].
4. Asavasanti S, Ristenpart W, Stroeve P. Barrett DM. Permeabilization of Plant Tissue by Monopolar Pulsed Electric Field: Effect of Frequency. J. Food Sci. 2011;28(2):445-53. http://dio.org/10.1111/j.1750-3841. 2010. 01940.x. 
5. Bocker R, Keven Silva E, Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP CEP, Brazil:13083-862. 2022. 
6. Vorobiev E., Lebovka N., Processing of sugar beets assisted by pulsed electric fields. Res Agr. Eng. 2022, 68: 63–79. https://doi.org/10.17221/91/2021-RAE. 
7. de L. Castro, M. D. and Garcia-Ayuso, L. E. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Analytica Chimica Acta. 1998;369:1–10. https://doi.org/10.1016/S0003-2670 (98) 00233-5.  
8. Shorstkii I, Stuehmeier-Niehe C, Sosnin M, Hossein Ali E, Comiotto-Alles M, Siemer C, et al, Pulsed Electric Field Treatment Application to Improve Product Yield and Efficiency of Bioactive Compounds through Extraction from Peels in Kiwifruit Processing. 2023.  https://doi.org/10.1155/2023/8172255.
9. Wood L. $5 Billion Natural Dyes Market - Global Outlook and Forecasts 2019- 2024. Retrieved from .2019. https://www.prnewswire.com/news-releases/5-billion-na tural-dyes-market global-outlook-and-forecasts-2019-2024-300797306.html. Accessed 20/10/2021 2021. 
10. Delgado-Vargas F, Jim´enez AR, Paredes-Lopez O. Natural pigments: Carotenoids, anthocyanins, and betalains  --Characteristics, biosynthesis, processing, and stability. CRC Crit Rev Food Sci Nutr. 2000;40(3),173–289. https://doi.org/10.1080/10408690091189257. 
11. Aadil R. M., Zeng X.-A, Han Z. Sahar A, Khalil A. A. Rahman U. U, et al. Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice. J Food Process Preserv, 2018;42(2), 13507. https://doi.org/10.1111/jfpp.13507.
12. Barba F. J. Zhu Z. Koubaa M. Sant’Ana A. S. Orlien V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by products. Trends Food Sci Technol. 2016;49,96–109. https://doi.org/10.1016/j.tifs.2016.01.006.
13. Liang Gong Y, Lang H, Jun X, High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review, Crit Rev Food Sci Nutr, 2017, 2877-2888, https://doi.org/10.1080/10408398.2015.1077193.
14. Ngamwonglumlert L, Devahastin S, Chiewchan N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr. 2017; 57(15), 3243–3259. https://doi.org/10.1080/10408398.2015.1109498.
15. Pu´ertolas E. Cregenz´ an O. Luengo, E. ´ Alvarez I. Raso J. Pulsed-electricfield-assisted extraction of anthocyanins from purple-fleshed potato, Food Chem Adv. 2013;136(3), 1330–1336. https://doi.org/10.1016/j.foodchem.2012.09.080. 
16. Zhou Y.  Zhao X. Huang H. Effects of pulsed electric fields on anthocyanin extraction yield of blueberry processing by-products. J Food Process Preserv. 2015;39(6), 1898–1904. https://doi.org/10.1111/jfpp.12427.
17. Barba F. J. Parniakov O. Pereira S. A. Wiktor A. Grimi N. Boussetta N, et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Sci Technol Res, 2015;77, 773–798. https://doi.org/10.1007/s11947-015-1482-3.
18. Medina-Meza I. G. Boioli P. Barbosa-Canovas´ G. V, Assessment of the effects of ultrasonics and pulsed electric fields on nutritional and rheological properties of raspberry and blueberry purees, Food Bioproc Tech 2016;9(3), 520–531. https://doi.org/10.1007/s11947-015-1642-5.
19. Nowacka M. Tappi S. Wiktor A, Rybak K. Miszczykowska A. Czyzewski J. et al. The impact of pulsed electric field on the extraction of bioactive compounds from beetroot. Foods, 2019;8(7). https://doi.org/10.3390/foods8070244.
20. Lopez, ´ N.  Pu´ertolas, E. Condon, ´ S.  Raso, J. Alvarez, I. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J Food Sci Eng, 2009; 90(1), 60–66. https://doi.org/10.1016/j.jfoodeng.2008.06.002.
21. Luengo E. Martínez, J. M. Alvarez, ´ I.  Raso J. Effects of millisecond and microsecond pulsed electric fields on red beet cell disintegration and extraction of betanines. Ind Crops Prod. 2016;. 28–33. https://doi.org/10.1016/j.indcrop.2016.01.016.
22. Koubaa M, Barba F. J. Grimi N. Mhemdi, H. Koubaa W. Boussetta N, et al. Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innov Food Sci Emerg Technol , 2016, 336–344.. https://doi.org/10.1016/j.ifset.2016.04.015. 
23. Siddeeg A. Faisal Manzoor M. Haseeb Ahmad M. Ahmad N. Ahmed Z. Khan K. I. M. Ammar A. F, Pulsed electric field-assisted ethanolic extraction of date palm fruits: Bioactive compounds, antioxidant activity and physicochemical properties. Processes, 7(9). 2019. https://doi.org/10.3390/pr7090585 .
24. Pataro G. Carullo D. Falcone M. Ferrari G. Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innovative Food Science & Emerging Technologies, 63, Article 102369. 2020.
      https://doi.org/10.1016/j.ifset.2020.102369. 
25. Luengo E. Alvarez I. Raso J. Improving carotenoid extraction from tomato waste by pulsed electric fields. Frontiers in Nutrition, 1, 12. 2014.   https://doi.org/10.3389/fnut.2014.00012. 
26. Pataro G. Carullo D. Siddique A. Falcone M. Donsì F. Ferrari G. Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling, J Food Sci Eng; 2018. 233.  https://doi.org/10.1016/j.jfoodeng.2018.03.029.
27. Shiekh K. A. Olatunde O. O. Zhang B. Huda N. Benjakul S. Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa)leaves. Environ Res Health. 2021;359, https://doi.org/10.1016/j.foodchem.2021.129976. 
28. Zhang Z.-H. Wang L.-H. Zeng X.-A. Han, Z. Wang M.-S. Effect of pulsed electric fields (PEFs) on the pigments extracted from spinach (Spinacia oleracea L.). Innovative Food Science & Emerging Technologies. 2017; 43, 26–34. https://doi.org/10.1016/j.ifset.2017.06.014.
29. Pascual-Teresa S. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins. Arch Biochem Biophys. 2014; 559, 68-74.  https://doi.org/10.1016/j.abb.2014.04.012.
30. Ribeiro JS, Veloso CM," Microencapsulation of natural dyes with biopolymers for application in food: A review". Food Hydrocoll Health, 2021; 1. https://doi.org/10.1016/j.foodhyd.2020.106374.
31. Cortez R, Luna-Vital D, Margulis DE A, Gonzalez de M. "Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications". Comprehensive Reviews in Food Science and Food Safety, 2017;16(1), 180–198.    https://doi.org/10.1111/1541-4337.12244.
32. Ghamari M, Zareei H, Yazdankhah S, A review of new methods in lycopene extraction, The 4th national congress of development and promotion of agricultural engineering and soil sciences of Iran, 1401 [In Persian].
33.Dolatabadi Z, Elhamirad A M, Akhlaghi Feyzabadi S H, Farzaneh V, Bakhshabadi H, Optimizing the extraction process of lycopene and phenolic compounds from tomato pomace using pulsed electric field pretreatment, Iranian journal of food science anad industry, 19(125):109-119.1401.https://doi.org/20.1001.1.20088787.1401.19.125.11.0.[In Persian]. 
34. Zhou Y, Zhao X, Huang H. Effects of pulsed electric fields on anthocyanin extraction yield of blueberry processing by-products. J Food Process Preserv, 2015, 39(6), 1898–1904. https://doi.org/10.1111/jfpp.12427. 
35. Arshad R. N. Abdul-Malek Z. Munir A. Buntat Z. Ahmad M. H. Jusoh Y. et al. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science & Technology, 2020, 104, 1–13.. https://doi.org/10.1016/j.tifs.2020.07.008.
36. Singh T, Kumar Pandey V, Kumar Dash K, Zanwar S , Singh R, Natural bio-colorant and pigments: Sources and applications in food processing,  CABI Agric Biosci, 2023, 100628, https://doi.org/10.1016/j.jafr.2023.100628.