مروری بر تهیه و کاربرد تانن‌‌ها به عنوان بازدارنده‌‌های طبیعی شعله در پوشش‌‌های سطح

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی، دانشکده علوم، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران، صندوق‌پستی: 4416-15785.

2 استادیار، گروه پژوهشی پوشش‌های سطح و خوردگی، پژوهشگاه رنگ، تهران، ایران، صندوق‌پستی: 654-167654.

3 دانشیار، گروه پژوهشی مواد رنگزای آلی، پژوهشگاه رنگ، تهران، ایران، صندوق پستی: 654-167654.

10.30509/jscw.2025.167395.1208

چکیده

توسعه فناوری در صنایع مختلف، معرفی و استفاده از انواع پوشش‌‌های جدید را ضروری کرده است. برای تهیه پوشش‌‌های جدید توجه به مسائل زیست‌محیطی و کاهش آلاینده‌‌ها و ضایعات بسیار مهم است. یکی از پوشش‌‌های جدید و بسیار پرطرفدار، پوشش ضد شعله است که علاوه بر کاهش خسارات مالی، از بروز بلایای انسانی نیز جلوگیری می‌‌کند. بیشتر مواد بازدارنده شعله مرسوم، دارای هالوژن هستند که از نظر زیست‌محیطی مناسب نیستند. از این رو، معرفی مواد مقاوم در برابر شعله که زیست‌سازگار و پایدار هستند، مورد توجه محققان و صنایع مختلف قرار گرفته است. برای این منظور می‌‌توان از ترکیبات زیستی استفاده نمود. در این مقاله انواع بازدارنده‌‌های زیستی مقاوم در برابر شعله معرفی می‌شود و سازوکار عملکرد آن‌‌ها مورد بررسی قرار می‌‌گیرد. در ادامه اسید تانیک به عنوان یک منبع طبیعی امیدبخش در طراحی و تولید پوشش‌‌های مقاوم در برابر شعله توضیح داده شده و آخرین دستاوردهای منتشر شده در این خصوص مورد بررسی قرار می‌‌گیرد. در پایان، مزایا، معایب و محدودیت‌‌های این مواد بررسی شده و چالش‌‌های پیش رو برای توسعه آنها ارائه می‌‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Preparation and Application of Tannins as Natural Flame Retardants for Coatings

نویسندگان [English]

  • Hamid Ghasemi 1
  • shadi montazeri 2
  • Mozhgan Hosseinnezhad 3
1 Department of Science, K.N. Toosi University of Technology, P.O. Box: 15785-4416, Tehran, Iran.
2 Surface Coatings and Corrosion Department, Institute for Color Science and Technology, P. O. Box. 16765-654, Tehran, Iran.
3 Department of Organic Colorants, Institute for Color Science and Technology, P. O. Box. 16765-654, Tehran, Iran.
چکیده [English]

The development of technology and various industries has necessitated the use of new types of coatings. To prepare new coatings, it is very important to pay attention to environmental issues and reduce emissions and waste. One of the new and very popular coatings is the flame retardant coating, which, not only reduces financial losses, but also prevents human disasters. Most of the flame retardants contain halogen, which is not suitable from the environmental point of view. Therefore, the introduction of flame retardant materials that are biocompatible and stable has attracted the attention of researchers and various industries. However, biomaterials for the development of flame retardant coatings have attracted the attention of the world community. In this article, the types of flame-retardant biological retardants are introduced and their mechanism of action is investigated. Subsequently, tannic acid is introduced as a promising natural source for the development and production of flame retardant coatings, and the latest published results in this field are reviewed. Finally, the advantages, disadvantages and limitations of these materials are reviewed, and the challenges ahead for their development are presented.

کلیدواژه‌ها [English]

  • Natural flame retardants
  • Tannic acid
  • Combustion
  • Sustainable
1.    MOF nanorods/aluminum hydroxide (AlTH) synergism effect on the fire-retardancy/smoke-release and thermo-mechanical properties of a novel thermoplastic acrylic intumescent composite coating, Chem Eng J. 2022;428:132533. https://doi.org/10.1016/j.cej.2021.132533.
2.    Hennebert P. Concentrations of brominated flame retardants in plastics of electrical and electronic equipment, vehicles, construction, textiles and non-food packaging: a review of occurrence and management. Detritus. 2020;12:34-50. https://doi.org/10.31025/2611-4135/2020.13997.
3.    3. Ma X, Chen J, Zhu J, Yan N. Lignin-based polyurethane, recent advancesand future perspectives. Macromol. Rapid Commun. 2020;42:2000492. https://doi.org/10.1002/marc. 202000492.
4.    4. Morgan J, Hurley Guillermo, R. SFPE handbook of fire protection engineering. Fifth Edit. New York: 1 Springer, New York, 2016;581-606.
5.    Yang Y, Haurie L, Wangd DY. Bio-based materials for fire retardant application in construction products: A review. J Therm Anal Calorim. 2022;147:6563-6582. https://doi.org/10. 1007/s10973-021-11009-5.
6.    Wang X, Kalali EN, Wan JT, Wang D.Y. Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci. 2017; 69: 22-46. https://doi.org/10.1016/ j.progpolymsci. 2017.02.001.
7.    Chukwunwike SA, Okafor KJ. A review on some selected bio-based (green) flame retardants, research & reviews. J Eng Technol. 2019; 8: 38-44.
8.    Wang X, Yang G, Guo, H. Tannic acid as biobased flame retardants: A review. Anal Appl Pyrolys. 2023;174:106111. https://doi.org/10.1016/j.jaap.2023.106111.
9.    Nabipour H, Wang X, Song L, Hu Y. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohyd Polym. 2020;246:116641. https://doi.org/10.1016/j.carbpol .2020. 116641.
10. Yue X, Li Y, Li J, Xu Y. Improving fire behavior and smoke suppression of flame-retardant PBS composites using lignin chelate as carbonization agent and catalyst. J Appl Poly Sci. 2021; 138, 51199. https://doi.org/10.1002/app.51199.
11. Hosseinnezhad M, Gharanjig K, Adeel S, Mahmoudi Nahavandi A. Clean dyeing of wool yarns using oleaster fruit components as new bio‑mordant: a step toward reducing agricultural waste. Clean Technol Environ. Policy.2023;25:3149-3160. https://doi.org/10.1007/s10098-023-02563-7.
12. Peng H, Wang D, Fu S. Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers. Chem. Eng. J.2020;384: 123288. https://doi.org/10.1016/j.cej. 2019. 123288.
13. Zhang L, Wang Q, Jian RK, Wang DY. Bioinspired iron-loaded polydopamine nanospheres as green flame retardants for epoxy resin via free radical scavenging and catalytic charring. J Mater Chem. 2020;8:2529-2538. https://doi.org/ 10.1039/C9TA11021F.
14. Hosseinnezhad M, Zakermoghaddam N, Gharanjig K. Review on application of tannins in dyeing and coating. J Stud Color World. 2024; 14(1):71-85. https://dorl.net/ dor/20.1001.1.22517278.1402.14.1.6.1.
15. Aristri MA, Lubis MAR, Iswanto AH, Fatriasari W, Sari RK, Antov P, Gajtanska M, Papadopoulos AN, Pizzi A. Bio-based polyurethane resins derived from tannin: source, synthesis, characterisation, and application. Forests. 2021; 12: 1516. https://doi.org/10.3390/f12111516.
16. Yu F, Ba Z, Gao Z, Wang Y, Xie Y, Wang H, Qiu Z, Xiao Z. Modification with lignin-based N-P flame retardant to improve the flame retardancy and smoke suppression of wood. Chem Eng J. 2024; 439: 152827. https://doi.org/10.1016/j.cej.2024.152827.
17. Zhang AN, Liu B, Zhao HB, Wang YZ. Eco-friendly and durable flame-retardant coating for cotton fabrics based on dynamic coordination of Ca2+-tannin acid. Prog Org Coat. 2022;170:106964. https://doi.org/10.1016/j.porgcoat.2022. 106964.
18. Kim YN, Ha YM, Park JE, Kim YO, Jo JY, Han H, Lee DC, Kim J, Jung YC. Flame retardant, antimicrobial, and mechanical properties of multifunctional polyurethane nanofibers containing tannic acid-coated reduced graphene oxide. Polym Testing. 2021; 93: 107006. https://doi.org/ 10.1016/j.polymertesting.2020.107006
19. Basak S, Raja ASM, Saxena S, Patil PG, Tannin based polyphenolic bio-macromolecules: Creating a new era towards sustainable flame retardancy of polymers. Polym Degrad Stab. 2021;198:109603. https://doi.org/10.1016/ j.polymdegradstab.2021.109603.
20. Ahmad N, Alam M, Naushad M, Ansari A. Thermal decomposition and kinetic studies of tannic acid using model free methods. J Chilean Chem Soc. 2018;63:382. http://dx.doi.org/10.4067/s0717-97072018000103824.  
21.  Nam S, Condon BD, Xia Z, Nagarajan R, Hinchliffe DJ, Madison CA. Intu- mescent flame retardant cotton produced by tannic acid and sodium hydroxide. J Anal Appl Pyrol 2017;126:239. https://doi.org/10.1016/j.jaap.2017.06.003.
22.  Wang M, Yin GZ, Yang Y, Fu W, Diaz Palencia JL, Zhao J, Wang N, Jiang Y, Wang DY. Bio-based flame retardants to polymers: A review. Adv Indust Eng Polym Res. 2023;6(2):132-155. https://doi.org/10.1016/j.aiepr.2022.07.003.
23.  Wang X, Yang G, Guo H. Tannic acid as biobased flame retardants: A review. J Anal Appl Pyrolysis. 2023;174:106111.https://doi.org/10.1016/j.jaap.2023.106 111.
24.  Mensah RA, Shnmugam V, Narayanan S, Renner JS, Babu K, Neisiany RE, Forsth M, Sas G, Das O. A review of sustainable and environment-friendly flame retardants used in plastics. Polym Testing. 2022;108:107511. https://doi.org/10.1016/j. polymertesting 2022.107511.
25.  Guo H, Zheng X, Luo X, Mai B. Leaching of brominated flame retardants (BFRs) from BFRs-incorporated plastics in digestive fluids and the influence of bird diets. J Hazard Mater. 2020;393:122397. https://doi.org/10.1016/j.jhazmat. 2020. 122 397.
26. Zhang J, Wu X, Guo H, Zheng X, Mai B. Pollution of plastic debris and halogenated flame retardants (HFRs) in soil from an abandoned e-waste recycling site: do plastics contribute to (HFRs) in soil, J Hazard Mater. 2021;410:124649. https://doi.org/10.1016/j.jhazmat.2020.124649.